@phdthesis{Tiwarekar2019, author = {Tiwarekar, Vishakha Rakesh}, title = {The APOBEC3G-regulated host factors REDD1 and KDELR2 restrict measles virus replication}, doi = {10.25972/OPUS-17952}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179526}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Measles is an extremely contagious vaccine-preventable disease responsible for more than 90000 deaths worldwide annually. The number of deaths has declined from 8 million in the pre-vaccination era to few thousands every year due to the highly efficacious vaccine. However, this effective vaccine is still unreachable in many developing countries due to lack of infrastructure, while in developed countries too many people refuse vaccination. Specific antiviral compounds are not yet available. In the current situation, only an extensive vaccination approach along with effective antivirals could help to have a measles-free future. To develop an effective antiviral, detailed knowledge of viral-host interaction is required. This study was undertaken to understand the interaction between MV and the innate host restriction factor APOBEC3G (A3G), which is well-known for its activity against human immunodeficiency virus (HIV). Restriction of MV replication was not attributed to the cytidine deaminase function of A3G, instead, we identified a novel role of A3G in regulating cellular gene functions. Among two of the A3G regulated host factors, we found that REDD1 reduced MV replication, whereas, KDELR2 hampered MV haemagglutinin (H) surface transport thereby affecting viral release. REDD1, a negative regulator of mTORC1 signalling impaired MV replication by inhibiting mTORC1. A3G regulated REDD1 expression was demonstrated to inversely correlate with MV replication. siRNA mediated silencing of A3G in primary human blood lymphocytes (PBL) reduced REDD1 levels and simultaneously increased MV titres. Also, direct depletion of REDD1 improved MV replication in PBL, indicating its role in A3G mediated restriction of MV. Based on these finding, a new role of rapamycin, a pharmacological inhibitor of mTORC1, was uncovered in successfully diminishing MV replication in Vero as well as in human PBL. The ER and Golgi resident receptor KDELR2 indirectly affected MV by competing with MV-H for cellular chaperones. Due to the sequestering of chaperones by KDELR2, they can no longer assist in MV-H folding and subsequent surface expression. Taken together, the two A3G-regulated host factors REDD1 and KDELR2 are mainly responsible for mediating its antiviral activity against MV.}, language = {en} } @phdthesis{Schmithausen2019, author = {Schmithausen, Patrick Alexander Gerhard}, title = {Three-dimensional fluorescence image analysis of megakaryocytes and vascular structures in intact bone}, doi = {10.25972/OPUS-17854}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178541}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The thesis provides insights in reconstruction and analysis pipelines for processing of three-dimensional cell and vessel images of megakaryopoiesis in intact murine bone. The images were captured in a Light Sheet Fluorescence Microscope. The work presented here is part of Collaborative Research Centre (CRC) 688 (project B07) of the University of W{\"u}rzburg, performed at the Rudolf-Virchow Center. Despite ongoing research within the field of megakaryopoiesis, its spatio-temporal pattern of megakaryopoiesis is largely unknown. Deeper insight to this field is highly desirable to promote development of new therapeutic strategies for conditions related to thrombocytopathy as well as thrombocytopenia. The current concept of megakaryopoiesis is largely based on data from cryosectioning or in vitro studies indicating the existence of spatial niches within the bone marrow where specific stages of megakaryopoiesis take place. Since classic imaging of bone sections is typically limited to selective two-dimensional views and prone to cutting artefacts, imaging of intact murine bone is highly desired. However, this has its own challenges to meet, particularly in image reconstruction. Here, I worked on processing pipelines to account for irregular specimen staining or attenuation as well as the extreme heterogeneity of megakaryocyte morphology. Specific challenges for imaging and image reconstruction are tackled and solution strategies as well as remaining limitations are presented and discussed. Fortunately, modern image processing and segmentation strongly benefits from continuous advances in hardware as well as software-development. This thesis exemplifies how a combined effort in biomedicine, computer vision, data processing and image technology leads to deeper understanding of megakaryopoiesis. Tailored imaging pipelines significantly helped elucidating that the large megakaryocytes are broadly distributed throughout the bone marrow facing a surprisingly dense vessel network. No evidence was found for spatial niches in the bone marrow, eventually resulting in a revised model of megakaryopoiesis.}, subject = {Megakaryozytopoese}, language = {en} } @phdthesis{Fleischmann2019, author = {Fleischmann, Pauline Nikola}, title = {Starting foraging life: Early calibration and daily use of the navigational system in \(Cataglyphis\) ants}, doi = {10.25972/OPUS-15995}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159951}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Cataglyphis ants are famous for their navigational abilities. They live in hostile habitats where they forage as solitary scavengers covering distances of more than hundred thousand times their body lengths. To return to their nest with a prey item - mainly other dead insects that did not survive the heat - Cataglyphis ants constantly keep track of their directions and distances travelled. The navigational strategy is called path integration, and it enables an ant to return to the nest in a straight line using its home vector. Cataglyphis ants mainly rely on celestial compass cues, like the position of the sun or the UV polarization pattern, to determine directions, and they use an idiothetic step counter and optic flow to measure distances. In addition, they acquire information about visual, olfactory and tactile landmarks, and the wind direction to increase their chances of returning to the nest safe and sound. Cataglyphis' navigational performance becomes even more impressive if one considers their life style. Most time of their lives, the ants stay underground and perform tasks within the colony. When they start their foraging careers outside the nest, they have to calibrate their compass systems and acquire all information necessary for navigation during subsequent foraging. This navigational toolkit is not instantaneously available, but has to be filled with experience. For that reason, Cataglyphis ants perform a striking behavior for up to three days before actually foraging. These so-called learning walks are crucial for the success as foragers later on. In the present thesis, both the ontogeny and the fine-structure of learning walks has been investigated. Here I show with displacement experiments that Cataglyphis ants need enough space and enough time to perform learning walks. Spatially restricted novices, i. e. na{\"i}ve ants, could not find back to the nest when tested as foragers later on. Furthermore, ants have to perform several learning walks over 1-3 days to gain landmark information for successful homing as foragers. An increasing number of feeder visits also increases the importance of landmark information, whereas in the beginning ants fully rely on their path-integration vector. Learning walks are well-structured. High-speed video analysis revealed that Cataglyphis ants include species-specific rotational elements in their learning walks. Greek Cataglyphis ants (C. noda and C. aenescens) inhabiting a cluttered pine forest perform voltes, small walked circles, and pirouettes, tight turns about the body axis with frequent stopping phases. During the longest stopping phases, the ants gaze back to their nest entrance. The Tunisian Cataglyphis fortis ants inhabiting featureless saltpans only perform voltes without directed gazes. The function of voltes has not yet been revealed. In contrast, the fine structure of pirouettes suggests that the ants take snapshots of the panorama towards their homing direction to memorize the nest's surroundings. The most likely hypothesis was that Cataglyphis ants align the gaze directions using their path integrator, which gets directional input from celestial cues during foraging. To test this hypothesis, a manipulation experiment was performed changing the celestial cues above the nest entrance (no sun, no natural polarization pattern, no UV light). The accurately directed gazes to the nest entrance offer an easily quantifiable readout suitable to ask the ants where they expect their nest entrance. Unexpectedly, all novices performing learning walks under artificial sky conditions looked back to the nest entrance. This was especially surprising, because neuronal changes in the mushroom bodies and the central complex receiving visual input could only be induced with the natural sky when comparing test animals with interior workers. The behavioral findings indicated that Cataglyphis ants use another directional reference system to align their gaze directions during the longest stopping phases of learning walk pirouettes. One possibility was the earth's magnetic field. Indeed, already disarraying the geomagnetic field at the nest entrance with an electromagnetic flat coil indicated that the ants use magnetic information to align their looks back to the nest entrance. To investigate this finding further, ants were confronted with a controlled magnetic field using a Helmholtz coil. Elimination of the horizontal field component led to undirected gaze directions like the disarray did. Rotating the magnetic field about 90°, 180° or -90° shifted the ants' gaze directions in a predictable manner. Therefore, the earth's magnetic field is a necessary and sufficient reference system for aligning nest-centered gazes during learning-walk pirouettes. Whether it is additionally used for other navigational purposes, e. g. for calibrating the solar ephemeris, remains to be tested. Maybe the voltes performed by all Cataglyphis ant species investigated so far can help to answer this question..}, subject = {Cataglyphis}, language = {en} } @phdthesis{Yu2019, author = {Yu, Sung-Huan}, title = {Development and application of computational tools for RNA-Seq based transcriptome annotations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176468}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In order to understand the regulation of gene expression in organisms, precise genome annotation is essential. In recent years, RNA-Seq has become a potent method for generating and improving genome annotations. However, this Approach is time consuming and often inconsistently performed when done manually. In particular, the discovery of non-coding RNAs benefits strongly from the application of RNA-Seq data but requires significant amounts of expert knowledge and is labor-intensive. As a part of my doctoral study, I developed a modular tool called ANNOgesic that can detect numerous transcribed genomic features, including non-coding RNAs, based on RNA-Seq data in a precise and automatic fashion with a focus on bacterial and achaeal species. The software performs numerous analyses and generates several visualizations. It can generate annotations of high-Resolution that are hard to produce using traditional annotation tools that are based only on genome sequences. ANNOgesic can detect numerous novel genomic Features like UTR-derived small non-coding RNAs for which no other tool has been developed before. ANNOgesic is available under an open source license (ISCL) at https://github.com/Sung-Huan/ANNOgesic. My doctoral work not only includes the development of ANNOgesic but also its application to annotate the transcriptome of Staphylococcus aureus HG003 - a strain which has been a insightful model in infection biology. Despite its potential as a model, a complete genome sequence and annotations have been lacking for HG003. In order to fill this gap, the annotations of this strain, including sRNAs and their functions, were generated using ANNOgesic by analyzing differential RNA-Seq data from 14 different samples (two media conditions with seven time points), as well as RNA-Seq data generated after transcript fragmentation. ANNOgesic was also applied to annotate several bacterial and archaeal genomes, and as part of this its high performance was demonstrated. In summary, ANNOgesic is a powerful computational tool for RNA-Seq based annotations and has been successfully applied to several species.}, subject = {Genom}, language = {en} } @phdthesis{Mayer2019, author = {Mayer, Rafaela}, title = {OxPAPC as an endogenous agonist of TRPA1 channels on nociceptors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175890}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Non-steroidal antiinflammatory drugs are most commonly used for inflammatory and postoperative pain. But they lack effectiveness and specificity, leading to severe side effects, like gastric ulcers, asthma and severe bleeding. Oxidized 1-palmitoyl-2-arachinidonoyl-sn-glycero-3-phosphocholine (OxPAPC) plays an important role in inflammatory pain. PAPC is a common phosphatidylcholine of membranes, which can be oxidized by reactive oxygen species. In preliminary experiments, our group found that local injection of OxPAPC in rat paws induces hyperalgesia. In this study we examined the effect of OxPAPC on transient receptor potential A1 (TRPA1), an ion channel expressed in C-fiber neurons. Furthermore, we investigated if intracellular cysteine residues of TRPA1 were necessary for agonist-channel-interactions and if a subsequent TRPA1 activation could be prevented by OxPAPC scavengers. To answer these questions, we performed calcium imaging using HEK-293 cells stably expressing hTRPA1, or transiently expressing the triple mutant channel hTRPA1-3C and na{\"i}ve DRG neurons. Cells were incubated with the ratiometric, fluorescent dye Fura-2/AM and stimulated with OxPAPC. The change of light emission after excitation with 340 and 380 nm wavelengths allowed conclusions regarding changes of intracellular calcium concentrations after TRPA1 activation. In our investigation we proved evidence that OxPAPC activates TRPA1, which caused a flow of calcium ions into the cytoplasm. The TRPA1-specific channel blocker HC-030031 eliminated this agonist-induced response. TRPA1-3C was not completely sensitive to OxPAPC. The peptide D-4F and the monoclonal antibody E06 neutralized OxPAPC-induced TRPA1 activation. In this work, the importance of OxPAPC as a key mediator of inflammatory pain and as a promising target for drug design is highlighted. Our results indicate that TRPA1 activation by OxPAPC involves cysteine-dependent mechanisms, but there are other, cysteine-independent activation mechanisms as well. Potential pharmaceuticals for the treatment of inflammatory pain are D-4F and E06, whose efficiency has recently been confirmed in the animal model by our research group.}, subject = {Schmerzforschung}, language = {en} } @phdthesis{Wagner2019, author = {Wagner, Martin}, title = {Chronic Kidney Disease as an Important Co-morbid Condition in Coronary Heart Disease Patients}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175498}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In patients with coronary heart disease (CHD) the control of the modifiable "traditional" cardiovascular risk factors such as hypertension, dyslipidemia, diabetes, achieving/maintaining normal body weight and smoking cessation is of major importance to improve prognosis. Guideline recommendations for secondary CHD prevention include specific treatment targets for blood pressure, lipid levels, and markers of glucose metabolism for both younger and older patients. Chronic kidney disease (CKD) has been identified as a "non-traditional" risk factor for worse outcome in CHD patients, as it is associated with a markedly increased risk for subsequent CV events and mortality. The specific objectives of the current thesis-project are to investigate (a) the quality of care in a recent sample of German CHD patients and to investigate variation of risk factor control between younger and elder patients (≤70 versus >70 years), (b) to analyze the prevalence of CKD across Europe in stable CHD patients in the outpatient setting and during a hospital stay for CHD, (c) to investigate the level of awareness of CKD in German CHD patients and their treating physicians. Data from the European-wide EUROASPIRE IV study were used that include data on 7998 CHD patients in the ambulatory setting (study visit) and during a hospital stay for CHD (index). The German EUROASPIRE IV study center in W{\"u}rzburg recruited 536 patients in 2012-2013. Risk factor control was compared against the current recommendations of the European Society of Cardiology. CKD was described by stages of glomerular filtration rate (eGFR) and albuminuria. German patients were asked in an additional kidney specific module whether they have ever been told by a physician about renal impairment. The fact that CKD or acute kidney injury (AKI) was mentioned in prominent parts of the hospital discharge letter as well as correct ICD-coding of CKD or AKI served as a proxy for physician's awareness of CKD. The majority of German CHD patients was treated with the recommended drug therapies including e.g. β-blockers, anti-platelets and statins. However, treatment targets for blood pressure and LDL-cholesterol levels were not achieved in many patients (45\% and 53\%, respectively) and glycemic control in diabetic CHD patients with HbA1-levels <7\% was insufficient (61\%). A minority of patients reported on current smoking (10\%), but unhealthy life-styles e.g. overweight/obesity (85\%/37\%) were frequent. Patterns of care differed between younger and older CHD patients while older patients were less likely to receive the recommended medical CHD-therapy, were more likely to have uncontrolled blood pressure and also to be diabetic. However, a greater proportion of diabetic patients >70 years was achieving the HbA1c target, and less elder patients were current smokers or were obese. About 17\% of patients on average had CKD (eGFR< 60 ml/min/1.73m²) in the entire European sample at the study visit, and an additional 10\% had albuminuria despite preserved eGFR, with considerable variation among countries. Impaired kidney function was observed in every fifth patient admitted for CHD in the entire European dataset of the EUROASPIRE IV study. Of the German CHD patients with CKD at the study visit, only a third were aware of their renal impairment. A minority of these patients was being seen by nephrologists, however, with a higher likelihood of CKD awareness and specialist care in more advanced stages of CKD. About a third of patients admitted for CHD showed either CKD or AKI during the hospital stay, but the discharge letter mentioned chronic or acute kidney disease only in every fifth of these patients. In contrast, correct ICD coding of CKD or AKI was more complete, but still suboptimal. In summary, quality of secondary prevention in German CHD patients indicates considerably room for improvement, with life-style modifications may become an even greater factor in prevention campaigns than medical treatment into certain target ranges. Preventive therapies should also consider different needs in older individuals acknowledging physical and mental potential, other comorbidities and drug-interactions with co-medication. CKD is common in CHD patients, not only in the elderly. Since CHD and CKD affect each other and impact on worse prognosis of each other, raising the awareness of CKD among patients and physicians and considering CKD in medical therapy may improve prognosis and slow disease progression of CHD as well as CKD.}, language = {en} } @phdthesis{Gulve2019, author = {Gulve, Nitish}, title = {Subversion of Host Genome Integrity by Human Herpesvirus 6 and \(Chlamydia\) \(trachomatis\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162026}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Ovarian cancer is one of the most common gynecological malignancies in the world. The prevalence of a microbial signature in ovarian cancer has been reported by several studies till date. In these microorganisms, Human herpesvirus 6 (HHV-6) and Chlamydia trachomatis (C.tr) are especially important as they have significantly high prevalence rate. Moreover, these pathogens are directly involved in causing DNA damage and thereby disrupting the integrity of host genome which is the underlying cause of any cancer. This study focuses on how the two pathogens, HHV-6 and C. trachomatis can affect the genome integrity in their individual capacities and thereby may drive ovarian epithelial cells towards transformation. HHV-6 has unique tendency to integrate its genome into the host genome at subtelomeric regions and achieve a state of latency. This latent virus may get reactivated during the course of life by stress, drugs such as steroids, during transplantation, pregnancy etc. The study presented here began with an interesting observation wherein the direct repeat (DR) sequences flanking the ends of double stranded viral genome were found in unusually high numbers in human blood samples as opposed to normal ratio of two DR copies per viral genome. This study was corroborated with in vitro data where cell lines were generated to mimic the HHV-6 status in human samples. The same observation of unusually high DR copies was found in these cell lines as well. Interestingly, fluorescence in situ hybridization (FISH) and inverse polymerase chain reaction followed by southern blotting showed that DR sequences were found to be integrated in nontelomeric regions as opposed to the usual sub-telomeric integration sites in both human samples and in cell lines. Sanger sequencing confirmed the non-telomeric integration of viral DR sequences in the host genome. Several studies have shown that C. trachomatis causes DNA damage and inhibits the signaling cascade of DNA damage response. However, the effect of C. trachomatis infection on process of DNA repair itself was not addressed. In this study, the effect of C. trachomatis infection on host base excision repair (BER) has been addressed. Base excision repair is a pathway which is responsible for replacing the oxidized bases with new undamaged ones. Interestingly, it was found that C. trachomatis infection downregulated polymerase β expression and attenuated polymerase β- mediated BER in vitro. The mechanism of the polymerase β downregulation was found to be associated with the changes in the host microRNAs and downregulation of tumor suppressor, p53. MicroRNA-499 which has a binding site in the polymerase β 3'UTR was shown to be upregulated during C. trachomatis infection. Inhibition of miR-499 using synthetic miR-499 inhibitor indeed improved the repair efficiency during C. trachomatis infection in the in vitro repair assay. Moreover, p53 transcriptionally regulates polymerase β and stabilizing p53 during C. trachomatis infection enhanced the repair efficiency. Previous studies have shown that C. trachomatis can reactivate latent HHV-6. Therefore, genomic instability due to insertions of unstable 'transposon-like' HHV-6 DR followed by compromised BER during C. trachomatis infection cumulatively support the hypothesis of pathogenic infections as a probable cause of ovarian cancer}, subject = {Chlamydia trachomatis}, language = {en} } @phdthesis{Schubert2019, author = {Schubert, Frank Klaus}, title = {The circadian clock network of \(Drosophila\) \(melanogaster\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157136}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {All living organisms need timekeeping mechanisms to track and anticipate cyclic changes in their environment. The ability to prepare for and respond to daily and seasonal changes is endowed by circadian clocks. The systemic features and molecular mechanisms that drive circadian rhythmicity are highly conserved across kingdoms. Therefore, Drosophila melanogaster with its relatively small brain (ca. 135.000 neurons) and the outstanding genetic tools that are available, is a perfect model to investigate the properties and relevance of the circadian system in a complex, but yet comprehensible organism. The last 50 years of chronobiological research in the fruit fly resulted in a deep understanding of the molecular machinery that drives circadian rhythmicity, and various histological studies revealed the neural substrate of the circadian system. However, a detailed neuroanatomical and physiological description on the single-cell level has still to be acquired. Thus, I employed a multicolor labeling approach to characterize the clock network of Drosophila melanogaster with single-cell resolution and additionally investigated the putative in- and output sites of selected neurons. To further study the functional hierarchy within the clock network and to monitor the "ticking clock" over the course of several circadian cycles, I established a method, which allows us to follow the accumulation and degradation of the core clock genes in living brain explants by the means of bioluminescence imaging of single-cells.}, subject = {Taufliege}, language = {en} } @phdthesis{Frank2019, author = {Frank, Erik Thomas}, title = {Behavioral adaptations in the foraging behaviour of \(Megaponera\) \(analis\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156544}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {An efficient foraging strategy is one of the most important traits for the fitness of animals. The theory of optimal foraging tries to predict foraging behaviour through the overarching question: how animals should forage so as to minimize costs while maximizing profits? Social insects, having occupied nearly every natural niche through widely different strategies, offer themselves as an ideal group to study how well optimal foraging theory can explain their behaviour and success. Specialization often leads to unique adaptations in morphology and behaviour. I therefore decided to investigate the behaviour of Megaponera analis. This ponerine ant species is specialized on hunting only termites of the subfamily Macrotermitinae at their foraging sites. Their foraging behaviour is regulated by a handful of individual scouts (10-20) that search for termite foraging sites before returning to the nest to recruit a large number of nestmates (200-500 ants). These ants then follow the scout in a column formation to the termites and after the hunt return together to the nest, these raids occur two to five times per day. Predators of highly defensive prey likely develop cost reducing adaptations. The evolutionary arms race between termites and ants led to various defensive mechanisms in termites, e.g. a caste specialized in fighting predators. As M. analis incurs high injury/mortality risks when preying on termites, some risk mitigating adaptations have evolved. I show that a unique rescue behaviour in M. analis, consisting of injured nestmates being carried back to the nest, reduces combat mortality. These injured ants "call for help" with pheromones present in their mandibular gland reservoirs. A model accounting for this rescue behaviour identifies the drivers favouring its evolution and estimates that rescuing allows for maintaining a 29\% larger colony size. Heavily injured ants that lost too many legs during the fight on the other hand are not helped. Interestingly, this was regulated not by the helper but by the uncooperativeness of the injured ant. I further observed treatment of the injury by nestmates inside the nest through intense allogrooming directly at the wound. Lack of treatment increased mortality from 10\% to 80\% within 24 hours, with the cause of death most likely being infections. Collective decision-making is one of the main mechanisms in social insects through which foraging is regulated. However, individual decision-making can also play an important role, depending on the type of foraging behaviour. In M. analis only a handful of individuals (the scouts) hold all the valuable information about foraging sites. I therefore looked at predictions made by optimal foraging theory to better understand the interplay between collective and individual decision-making in this obligate group-raiding predator. I found a clear positive relation between raid size and termite abundance at the foraging site. Furthermore, selectivity of the food source increased with distance. The confirmation of optimal foraging theory suggests that individual scouts must be the main driver behind raid size, choice and raiding behaviour. Therefore most central place foraging behaviours in M. analis were not achieved by collective decisions but rather by individual decisions of scout ants. Thus, 1\% of the colony (10-20 scouts) decided the fate and foraging efficiency of the remaining 99\%. Division of labour is one of the main reasons for the success of social insects. Worker polymorphism, age polyethism and work division in more primitive ants, like the ponerines, remain mostly unexplored though. Since M. analis specializes on a defensive prey, adaptations to reduce their foraging costs can be expected. I found that the work division, task allocation and column-formation during the hunt were much more sophisticated than was previously thought. The column-formation was remarkably stable, with the same ants resuming similar positions in subsequent raids and front ants even returning to their positions if displaced in the same raid. Most of the raid tasks were not executed by predetermined members of the raid but were filled out as need arose during the hunt, with a clear preference for larger ants to conduct most tasks. I show that specialization towards a highly defensive prey can lead to very unique adaptations in the foraging behaviour of a species. I explored experimentally the adaptive value of rescue behaviour focused on injured nestmates in social insects. This was not only limited to selective rescuing of lightly injured individuals by carrying them back (thus reducing predation risk) but moreover includes a differentiated treatment inside the nest. These observations will help to improve our understanding of the evolution of rescue behaviour in animals. I further show that most optimal foraging predictions are fulfilled and regulated by a handful of individuals in M. analis. Lastly, I propose that the continuous allometric size polymorphism in M. analis allows for greater flexibility in task allocation, necessary due to the unpredictability of task requirements in an irregular system such as hunting termites in groups. All of my observations help to further understand how a group-hunting predator should forage so as to minimize costs while maximizing profits.}, subject = {Stechameisen}, language = {en} } @phdthesis{Segerer2019, author = {Segerer, Gabriela}, title = {Characterization of cell biological and physiological functions of the phosphoglycolate phosphatase AUM}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123847}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Mammalian haloacid dehalogenase (HAD)-type phosphatases are a large and ubiquitous family of at least 40 human members. Many of them have important physiological functions, such as the regulation of intermediary metabolism and the modulation of enzyme activities, yet they are also linked to diseases such as cardiovascular or metabolic disorders and cancer. Still, most of the mammalian HAD phosphatases remain functionally uncharacterized. This thesis reveals novel cell biological and physiological functions of the phosphoglycolate phosphatase PGP, also referred to as AUM. To this end, PGP was functionally characterized by performing analyses using purified recombinant proteins to investigate potential protein substrates of PGP, cell biological studies using the spermatogonial cell line GC1, primary mouse lung endothelial cells and lymphocytes, and a range of biochemical techniques to characterize Pgp-deficient mouse embryos. To characterize the cell biological functions of PGP, its role downstream of RTK- and integrin signaling in the regulation of cell migration was investigated. It was shown that PGP inactivation elevates integrin- and RTK-induced circular dorsal ruffle (CDR) formation, cell spreading and cell migration. Furthermore, PGP was identified as a negative regulator of directed lymphocyte migration upon integrin- and GPCR activation. The underlying mechanisms were analyzed further. It was demonstrated that PGP regulates CDR formation and cell migration in a PLC- and PKC-dependent manner, and that Src family kinase activities are required for the observed cellular effects. Upon integrin- and RTK activation, phosphorylation levels of tyrosine residues 1068 and 1173 of the EGF receptor were elevated and PLCγ1 was hyper-activated in PGP-deficient cells. Additionally, PGP-inactivated lymphocytes displayed elevated PKC activity, and PKC-mediated cytoskeletal remodeling was accelerated upon loss of PGP activity. Untargeted lipidomic analyses revealed that the membrane lipid phosphatidylserine (PS) was highly upregulated in PGP-depleted cells. These data are consistent with the hypothesis that the accumulation of PS in the plasma membrane leads to a pre-assembly of signaling molecules such as PLCγ1 or PKCs that couple the activation of integrins, EGF receptors and GPCRs to accelerated cytoskeletal remodeling. Thus, this thesis shows that PGP can affect cell spreading and cell migration by acting as a PG-directed phosphatase. To understand the physiological functions of PGP, conditionally PGP-inactivated mice were analyzed. Whole-body PGP inactivation led to an intrauterine growth defect with developmental delay after E8.5, resulting in a gradual deterioration and death of PgpDN/DN embryos between E9.5 and E11.5. However, embryonic lethality upon whole-body PGP inactivation was not caused by a primary defect of the (cardio-) vascular system. Rather, PGP inactivated embryos died during the intrauterine transition from hypoxic to normoxic conditions. Therefore, the potential impact of oxygen on PGP-dependent cell proliferation was investigated. Analyses of mouse embryonic fibroblasts (MEFs) generated from E8.5 embryos and GC1 cells cultured under normoxic and hypoxic conditions revealed that normoxia (~20\% O2) causes a proliferation defect in PGP-inactivated cells, which can be rescued under hypoxic (~1\% O2) conditions. Mechanistically, it was found that the activity of triosephosphate isomerase (TPI), an enzyme previously described to be inhibited by phosphoglycolate (PG) in vitro, was attenuated in PGP-inactivated cells and embryos. TPI constitutes a critical branch point between carbohydrate- and lipid metabolism because it catalyzes the isomerization of the glycolytic intermediates dihydroxyacetone phosphate (DHAP, a precursor of the glycerol backbone required for triglyceride biosynthesis) and glyceraldehyde 3'-phosphate (GADP). Attenuation of TPI activity, likely explains the observed elevation of glycerol 3-phosphate levels and the increased TG biosynthesis (lipogenesis). Analyses of ATP levels and oxygen consumption rates (OCR) showed that mitochondrial respiration rates and ATP production were elevated in PGP-deficient cells in a lipolysis-dependent manner. However under hypoxic conditions (which corrected the impaired proliferation of PGP-inactivated cells), OCR and ATP production was indistinguishable between PGP-deficient and PGP-proficient cells. We therefore propose that the inhibition of TPI activity by PG accumulation due to loss of PGP activity shifts cellular bioenergetics from a pro-proliferative, glycolytic metabolism to a lipogenetic/lipolytic metabolism. Taken together, PGP acts as a metabolic phosphatase involved in the regulation of cell migration, cell proliferation and cellular bioenergetics. This thesis constitutes the basis for further studies of the interfaces between these processes, and also suggests functions of PGP for glucose and lipid metabolism in the adult organism.}, subject = {Phosphoglykolatphosphatase}, language = {en} } @phdthesis{Alexander2019, author = {Alexander, Stephanie}, title = {Collective cancer cell invasion \(in\) \(vivo\): function of β1 and β3 integrins in perivascular invasion and resistance to therapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85435}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Pro-migratory signals mediated by the tumor microenvironment contribute to the cancer progression cascade, including invasion, metastasis and resistance to therapy. Derived from in vitro studies, isolated molecular steps of cancer invasion programs have been identified but their integration into the tumor microenvironment and suitability as molecular targets remain elusive. The purpose of the study was to visualize central aspects of tumor progression, including proliferation, survival and invasion by real-time intravital microscopy. The specific aims were to monitor the kinetics, mode, adhesion and chemoattraction mechanisms of tumor cell invasion, the involved guidance structures, and the response of invasion zones to anti-cancer therapy. To reach deeper tumor regions by optical imaging with subcellular resolution, near-infrared and infrared excited multiphoton microscopy was combined with a modified dorsal skinfold chamber model. Implanted HT-1080 fibrosarcoma and B16/F10 and MV3 melanoma tumors developed zones of invasive growth consisting of collective invasion strands that retained cell-cell contacts and high mitotic activity while invading at velocities of up to 200 μm per day. Collective invasion occurred predominantly along preexisting tissue structures, including blood and lymph vessels, collagen fibers and muscle strands of the deep dermis, and was thereby insensitive to RNAi based knockdown and/or antibody-based treatment against β1 and β3 integrins, chemokine (SDF-1/CXCL12) and growth factor (EGF) signaling. Therapeutic hypofractionated irradiation induced partial to complete regression of the tumor main mass, yet failed to eradicate the collective invasion strands, suggesting a microenvironmentally privileged niche. Whereas no radiosensitization was achieved by interference with EGFR or doxorubicin, the simultaneous inhibition of β1 and β3 integrins impaired cell proliferation and survival in spontaneously growing tumors and strongly enhanced the radiation response up to complete eradication of both main tumor and invasion strands. In conclusion, collective invasion in vivo is a robust process which follows preexisting tissue structures and is mainly independent of established adhesion and chemoattractant signaling. Due to its altered biological response to irradiation, collective invasion strands represent a microenvironmentally controlled and clinically relevant resistance niche to therapy. Therefore supportive regimens, such as anoikisinduction by anti-integrin therapy, may serve to enhance radio- and chemoefficacy and complement classical treatment regimens.}, subject = {Tumorzelle}, language = {en} }