@article{LuJayaramanFantuzzietal.2022, author = {Lu, Wei and Jayaraman, Arumugam and Fantuzzi, Felipe and Dewhurst, Rian D. and H{\"a}rterich, Marcel and Dietz, Maximilian and Hagspiel, Stephan and Krummenbacher, Ivo and Hammond, Kai and Cui, Jingjing and Braunschweig, Holger}, title = {An unsymmetrical, cyclic diborene based on a chelating CAAC ligand and its small-molecule activation and rearrangement chemistry}, series = {Angewandte Chemie International Edition}, volume = {61}, journal = {Angewandte Chemie International Edition}, number = {3}, doi = {10.1002/anie.202113947}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256576}, year = {2022}, abstract = {A one-pot synthesis of a CAAC-stabilized, unsymmetrical, cyclic diborene was achieved via consecutive two-electron reduction steps from an adduct of CAAC and B\(_2\)Br\(_4\)(SMe\(_2\))\(_2\). Theoretical studies revealed that this diborene has a considerably smaller HOMO-LUMO gap than those of reported NHC- and phosphine-supported diborenes. Complexation of the diborene with [AuCl(PCy\(_3\))] afforded two diborene-Au\(^I\) π complexes, while reaction with DurBH\(_2\), P\(_4\) and a terminal acetylene led to the cleavage of B-H, P-P, and C-C π bonds, respectively. Thermal rearrangement of the diborene gave an electron-rich cyclic alkylideneborane, which readily coordinated to Ag\(^I\) via its B=C double bond.}, language = {en} } @article{StennettJayaramanBrueckneretal.2020, author = {Stennett, Tom E. and Jayaraman, Arumugam and Br{\"u}ckner, Tobias and Schneider, Lea and Braunschweig, Holger}, title = {Hydrophosphination of boron-boron multiple bonds}, series = {Chemical Science}, volume = {11}, journal = {Chemical Science}, doi = {10.1039/c9sc05908c}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240681}, pages = {1335-1341}, year = {2020}, abstract = {Five compounds containing boron-boron multiple bonds are shown to undergo hydrophosphination reactions with diphenylphosphine in the absence of a catalyst. With diborenes, the products obtained are highly dependent on the substitution pattern at the boron atoms, with both 1,1- and 1,2- hydrophosphinations observed. With a symmetrical diboryne, 1,2-hydrophosphination yields a hydro(phosphino)diborene. The different mechanistic pathways for the hydrophosphination of diborenes are rationalised with the aid of density functional theory calculations.}, language = {en} }