@article{JordanHufnagelMcDonoghetal.2022, author = {Jordan, Martin C. and Hufnagel, Lukas and McDonogh, Miriam and Paul, Mila M. and Schmalzl, Jonas and Kupczyk, Eva and Jansen, Hendrik and Heilig, Philipp and Meffert, Rainer H. and Hoelscher-Doht, Stefanie}, title = {Surgical fixation of calcaneal beak fractures — biomechanical analysis of different osteosynthesis techniques}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {10}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2022.896790}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282792}, year = {2022}, abstract = {The calcaneal beak fracture is a rare avulsion fracture of the tuber calcanei characterized by a solid bony fragment at the Achilles tendon insertion. Treatment usually requires osteosynthesis. However, lack of biomechanical understanding of the ideal fixation technique persists. A beak fracture was simulated in synthetic bones and assigned to five different groups of fixation: A) 6.5-mm partial threaded cannulated screws, B) 4.0-mm partial threaded cannulated screws, C) 5.0-mm headless cannulated compression screws, D) 2.3-mm locking plate, and E) 2.8-mm locking plate. Different traction force levels were applied through an Achilles tendon surrogate in a material-testing machine on all stabilized synthetic bones. Outcome measures were peak-to-peak displacement, total displacement, plastic deformation, stiffness, visual-fracture-line displacement, and mode of implant failure. The 2.3- and 2.8-mm plating groups showed a high drop-out rate at 100 N tension force and failed under higher tension levels of 200 N. The fracture fixation using 4.0-mm partial threaded screws showed a significantly higher repair strength and was able to withhold cyclic loading up to 300 N. The lowest peak-to-peak displacement and the highest load-to-failure and stiffness were provided by fracture fixation using 6.5-mm partial threaded cannulated screws or 5.0-mm headless cannulated compression screws. As anticipated, large 6.5-mm screw diameters provide the best biomechanical fixation. Surprisingly, the 5.0-mm headless cannulated compression screws yield reliable stability despite the absent screw head and washer. When such large screws cannot be applied, 4.0-mm screws also allow reasonable fixation strength. Plate fixation should be implemented with precaution and in combination with a restrictive postoperative motion protocol. Finally, clinical cases about the surgical application and recovery are included.}, language = {en} } @article{HeiligFaerberPauletal.2022, author = {Heilig, Philipp and Faerber, Lars-Christopher and Paul, Mila M. and Kupczyk, Eva and Meffert, Rainer H. and Jordan, Martin C. and Hoelscher-Doht, Stefanie}, title = {Plate osteosynthesis combined with bone cement provides the highest stability for tibial head depression fractures under high loading conditions}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-022-19107-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299782}, year = {2022}, abstract = {Older patients sustaining tibial head depression fractures often cannot follow the post-operative rehabilitation protocols with partial weight-bearing of the affected limb, leading to osteosynthesis failure, cartilage step-off and arthritis development. Therefore, the aim of this study was to analyse the biomechanical performance of different types of osteosyntheses alone and in combination with bone cement simulating cyclically high loading conditions of tibial head depression fractures. Lateral tibial head depression fractures (AO: 41-B2.2; Schatzker type III) were created in synthetic bones and stabilized using three different osteosyntheses alone and in combination with a commonly used bone cement (chronOS™): 2 screws, 4 screws in the jail technique and a lateral angle-stable buttress plate. After fixation, the lateral tibial plateau was axially loaded in two, from each other independent testing series: In the first test protocol, 5000 cycles with 500 N and in the end load-to-failure tests were performed. In the second test protocol, the cyclic loading was increased to 1000 N. Parameters of interest were the displacement of the articular fracture fragment, the stiffness and the maximum load. The osteosyntheses revealed a higher stiffness in combination with bone cement compared to the same type of osteosynthesis alone (e.g., 500 N level: 2 screws 383 ± 43 N/mm vs. 2 screws + chronOs 520 ± 108 N/mm, increase by 36\%, p < 0.01; 4 screws 368 ± 97 N/mm vs. 4 screws + chronOS 516 ± 109 N/mm, increase by 40\%, p < 0.01; plate: 509 ± 73 N/mm vs. plate + chronOs 792 ± 150 N/mm, increase by 56\%, p < 0.01). Bone cement reduced the displacement of the plate significantly (500 N level: plate: 8.9 ± 2.8 mm vs. plate + chronOs: 3.1 ± 1.4 mm, reduction by 65\%, p < 0.01; 1000 N level: 16.9 ± 3.6 mm vs 5.6 ± 1.3 mm, reduction by 67\%, p < 0.01). Thus, the highest stiffness and lowest displacement values were found when using the plate with bone cement in both loading conditions (500 N level: 2 screws + chronOs 3.7 ± 1.3 mm, 4 screws + chronOs 6.2 ± 2.4 mm; 1000 N level: 2 screws + chronOs 6.5 ± 1.2 mm, 4 screws + chronOs 5.7 ± 0.8 mm). From a biomechanical perspective, plate osteosynthesis of tibial head depression fractures should always be combined with bone cement, provides higher stability than 2-screw and 4-screw fixation and is a valid treatment option in cases where extraordinary stability is required.}, language = {en} } @article{HeiligSandnerJordanetal.2021, author = {Heilig, Philipp and Sandner, Phoebe and Jordan, Martin Cornelius and Jakubietz, Rafael Gregor and Meffert, Rainer Heribert and Gbureck, Uwe and Hoelscher-Doht, Stefanie}, title = {Experimental drillable magnesium phosphate cement is a promising alternative to conventional bone cements}, series = {Materials}, volume = {14}, journal = {Materials}, number = {8}, issn = {1996-1944}, doi = {10.3390/ma14081925}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236633}, year = {2021}, abstract = {Clinically used mineral bone cements lack high strength values, absorbability and drillability. Therefore, magnesium phosphate cements have recently received increasing attention as they unify a high mechanical performance with presumed degradation in vivo. To obtain a drillable cement formulation, farringtonite (Mg\(_3\)(PO\(_4\))\(_2\)) and magnesium oxide (MgO) were modified with the setting retardant phytic acid (C\(_6\)H\(_{18}\)O\(_{24}\)P\(_6\)). In a pre-testing series, 13 different compositions of magnesium phosphate cements were analyzed concentrating on the clinical demands for application. Of these 13 composites, two cement formulations with different phytic acid content (22.5 wt\% and 25 wt\%) were identified to meet clinical demands. Both formulations were evaluated in terms of setting time, injectability, compressive strength, screw pullout tests and biomechanical tests in a clinically relevant fracture model. The cements were used as bone filler of a metaphyseal bone defect alone, and in combination with screws drilled through the cement. Both formulations achieved a setting time of 5 min 30 s and an injectability of 100\%. Compressive strength was shown to be ~12-13 MPa and the overall displacement of the reduced fracture was <2 mm with and without screws. Maximum load until reduced fracture failure was ~2600 N for the cements only and ~3800 N for the combination with screws. Two new compositions of magnesium phosphate cements revealed high strength in clinically relevant biomechanical test set-ups and add clinically desired characteristics to its strength such as injectability and drillability.}, language = {en} } @article{JordanBroeerFischeretal.2022, author = {Jordan, Martin C. and Br{\"o}er, David and Fischer, Christian and Heilig, Philipp and Gilbert, Fabian and H{\"o}lscher-Doht, Stefanie and Kalogirou, Charis and Popp, Kevin and Grunz, Jan-Peter and Huflage, Henner and Jakubietz, Rafael G. and Erg{\"u}n, S{\"u}leyman and Meffert, Rainer H.}, title = {Development and preclinical evaluation of a cable-clamp fixation device for a disrupted pubic symphysis}, series = {Communications Medicine}, volume = {2}, journal = {Communications Medicine}, number = {1}, doi = {10.1038/s43856-022-00227-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299800}, year = {2022}, abstract = {Background Traumatic separation of the pubic symphysis can destabilize the pelvis and require surgical fixation to reduce symphyseal gapping. The traditional approach involves open reduction and the implantation of a steel symphyseal plate (SP) on the pubic bone to hold the reposition. Despite its widespread use, SP-fixation is often associated with implant failure caused by screw loosening or breakage. Methods To address the need for a more reliable surgical intervention, we developed and tested two titanium cable-clamp implants. The cable served as tensioning device while the clamp secured the cable to the bone. The first implant design included a steel cable anterior to the pubic symphysis to simplify its placement outside the pelvis, and the second design included a cable encircling the pubic symphysis to stabilize the anterior pelvic ring. Using highly reproducible synthetic bone models and a limited number of cadaver specimens, we performed a comprehensive biomechanical study of implant stability and evaluated surgical feasibility. Results We were able to demonstrate that the cable-clamp implants provide stability equivalent to that of a traditional SP-fixation but without the same risks of implant failure. We also provide detailed ex vivo evaluations of the safety and feasibility of a trans-obturator surgical approach required for those kind of fixation. Conclusion We propose that the developed cable-clamp fixation devices may be of clinical value in treating pubic symphysis separation.}, language = {en} } @article{FuchsHeiligMcDonoghetal.2020, author = {Fuchs, Konrad F. and Heilig, Philipp and McDonogh, Miriam and Boelch, Sebastian and Gbureck, Uwe and Meffert, Rainer H. and Hoelscher-Doht, Stefanie and Jordan, Martin C.}, title = {Cement-augmented screw fixation for calcaneal fracture treatment: a biomechanical study comparing two injectable bone substitutes}, series = {Journal of Orthopaedic Surgery and Research}, volume = {15}, journal = {Journal of Orthopaedic Surgery and Research}, doi = {10.1186/s13018-020-02009-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230336}, year = {2020}, abstract = {Background The role of cement-augmented screw fixation for calcaneal fracture treatment remains unclear. Therefore, this study was performed to biomechanically analyze screw osteosynthesis by reinforcement with either a calcium phosphate (CP)-based or polymethylmethacrylate (PMMA)-based injectable bone cement. Methods A calcaneal fracture (Sanders type IIA) including a central cancellous bone defect was generated in 27 synthetic bones, and the specimens were assigned to 3 groups. The first group was fixed with four screws (3.5 mm and 6.5 mm), the second group with screws and CP-based cement (Graftys (R) QuickSet; Graftys, Aix-en-Provence, France), and the third group with screws and PMMA-based cement (Traumacem (TM) V+; DePuy Synthes, Warsaw, IN, USA). Biomechanical testing was conducted to analyze peak-to-peak displacement, total displacement, and stiffness in following a standardized protocol. Results The peak-to-peak displacement under a 200-N load was not significantly different among the groups; however, peak-to-peak displacement under a 600- and 1000-N load as well as total displacement exhibited better stability in PMMA-augmented screw osteosynthesis compared to screw fixation without augmentation. The stiffness of the construct was increased by both CP- and PMMA-based cements. Conclusion Addition of an injectable bone cement to screw osteosynthesis is able to increase fixation strength in a biomechanical calcaneal fracture model with synthetic bones. In such cases, PMMA-based cements are more effective than CP-based cements because of their inherently higher compressive strength. However, whether this high strength is required in the clinical setting for early weight-bearing remains controversial, and the non-degradable properties of PMMA might cause difficulties during subsequent interventions in younger patients.}, language = {en} } @phdthesis{Heilig2018, author = {Heilig, Philipp}, title = {Biomechanische Evaluation neuartiger Knochenersatzmaterialien zur Therapie der Tibiakopfimpressionsfraktur}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171037}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Tibiakopfimpressionsfrakturen (AO 41-B2.2 - Schatzker III), welche aufgrund der demographischen Entwicklung in ihrer klinischen Relevanz zunehmen, erfordern zur bestm{\"o}glichen Frakturstabilisierung eine Schraubenosteosynthese sowie eine stabile metaphys{\"a}re Defektauff{\"u}llung mittels Knochenersatzmaterial, da anderenfalls ein sekund{\"a}rer Repositionsverlust mit konsekutiver Gonarthrose droht. Die hierbei eingesetzten Kalziumphosphatzemente bringen klinische Probleme wie geringe mechanische Stabilit{\"a}t, fehlende Bohrbarkeit, welche eine unvollst{\"a}ndige Defektauff{\"u}llung bedingt, ungewisse Resorption und un{\"u}berpr{\"u}fte Herstellerangaben mit sich. Diese Studie hatte daher zum Ziel, einen bohrbaren Kalziumphosphatzement und einen Magnesiumphosphatzement, welche als vielversprechende Alternativen aufgrund der klinischen Schwierigkeiten erscheinen, gegen Graftys® Quickset und ChronOS™ Inject biomechanisch einzuordnen und somit langfristig zu einer verbesserten Frakturversorgung beizutragen. Der erste Teil der Studie bestand aus einer reinen Materialpr{\"u}fung, in der mittels Zementquader Druckversuche und mittels Ausrissk{\"o}rper Zugversuche durchgef{\"u}hrt wurden. Im zweiten Teil wurde ein Frakturmodell f{\"u}r Impressionsfrakturen an Kunstknochen benutzt, um die Zemente hierbei zur Defektauff{\"u}llung zu verwenden und alleine sowie in Kombination mit einer Osteosynthese in der Jail-Technik zu testen. Es erfolgte eine zyklische Belastung mit 3000 Zyklen zu je 250 N sowie anschließend eine Maximalkrafttestung (Load-To-Failure) mit Hilfe einer Materialpr{\"u}fmaschine. Der Magnesiumphosphatzement zeigte die signifikant h{\"o}chste Kompressionsfestigkeit von 100,50 MPa ± 15,97 MPa und Ausrisskraft sowie im Verbund mit Knochen das geringste Displacement, h{\"o}chste Maximalkraft und Steifigkeit. Kalziumphosphat bohrbar wies aufgrund seines pseudoplastischen Verhaltens eine geringe biomechanische Stabilit{\"a}t und ein hohes Displacement auf, konnte aber durch seine Bohrbarkeit gegen{\"u}ber Graftys® Quickset bei Einsatz mit Schrauben einen Vorteil im Displacement erreichen und somit die Vorz{\"u}ge eines bohrbaren Knochenzements aufzeigen. ChronOS™ zeigte nach Aush{\"a}rtung im Wasserbad mit einer Kompressionsfestigkeit von 0,58 MPa ± 0,14 MPa eine niedrige biomechanische Stabilit{\"a}t und wurde daher nicht weiter untersucht. Da die Viskosit{\"a}t eines Zements neben anderen Faktoren f{\"u}r die Interdigitation mit den Spongiosahohlr{\"a}umen im Knochen verantwortlich ist, l{\"a}sst sich, sofern diese angemessen ist, R{\"u}ckschl{\"u}sse von der Materialpr{\"u}fung auf das Verhalten im Knochen ziehen. Magnesiumphosphatzemente erscheinen aufgrund ihrer hohen biomechanischen Stabilit{\"a}t und vermutlich guten Resorptionsrate als vielversprechende Alternative zu herk{\"o}mmlichen Kalziumphosphatzementen und bed{\"u}rfen daher einer weiteren {\"U}berpr{\"u}fung im Tierversuch.}, subject = {Knochenzement}, language = {de} }