@phdthesis{Ferraro2021, author = {Ferraro, Antonio}, title = {Entwicklung potenzieller (ir-)reversibler Inhibitoren der Enoyl-ACP-Reduktase FabI in S. aureus/ E. coli und der Thiolase FadA5 in M. tuberculosis}, doi = {10.25972/OPUS-23839}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238392}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Antimikrobielle Resistenzen stellen eine weltweite Herausforderung dar und sind mit einer hohen Morbidit{\"a}t und Mortalit{\"a}t verbunden. Die Letalit{\"a}tsrate durch multiresistente Keime steigt stetig an, weshalb die WHO im Jahr 2017 eine Priorit{\"a}tenliste resistenter Keime erstellte, die die Entwicklung neuer Antibiotika vorantreiben soll. Diese umfasst vornehmlich gramnegative Bakterien, da diese aufgrund ihres Zellaufbaus sowie diverser Resistenzmechanismen besonders widerstandsf{\"a}hig gegen{\"u}ber dem Angriff vieler Antibiotika sind. Einige grampositive Keime (z.B. S. aureus) stehen ebenfalls auf dieser Liste und stellen eine große Herausforderung f{\"u}r die Medizin dar. Infolgedessen ist die Entwicklung neuer Antiinfektiva mit neuen Angriffspunkten gegen resistente Pathogene zwingend n{\"o}tig, um mit bisherigen Resistenzen umgehen zu k{\"o}nnen. Die vorliegende Arbeit besch{\"a}ftigt sich mit der Entwicklung und Synthese von kovalent (reversibel) bindenden Inhibitoren der Enoyl-ACP-Reduktase FabI (Staphylococcus aureus, Escherichia coli) und der Thiolase FadA5 (Mycobacterium tuberculosis). Beide Enzyme sind essenziell f{\"u}r das {\"U}berleben des jeweiligen Bakteriums. FabI ist ein wichtiges und geschwindigkeitsbestimmendes Schl{\"u}sselenzym der Fetts{\"a}uresynthese Typ II diverser Bakterien. Hierbei werden wichtige Phospholipide hergestellt, die f{\"u}r den Aufbau der Zellmembran n{\"o}tig sind. Schiebel et al. ist es gelungen, einen potenten Inhibitor f{\"u}r den Erreger S. aureus sowie E. coli zu entwickeln und zu charakterisieren. Ausgehend von dieser Verbindung wurde eine Substanzbibliothek mit verschiedenen „warheads" hergestellt. Hierbei wurde die Verkn{\"u}pfung zwischen dem Pyridon-Grundger{\"u}st und der elektrophilen Gruppe sowie die {\"u}ber den Ether verkn{\"u}pften aromatischen Ringsysteme variiert. Diese Verbindungen wurden hinsichtlich ihrer inhibitorischen Aktivit{\"a}t am jeweiligen Enzym getestet. Anschließend wurde von Verbindung 32 und 33, die jeweils eine gute Inhibition des Enzyms aufweisen, der IC50-Wert gemessen. Beide Verbindungen weisen eine 50-prozentige Reduktion der Enzymaktivit{\"a}t im mittleren nanomolaren Bereich auf. Zus{\"a}tzlich wurde Verbindung 32 in einem sogenannten „jump-dilution"-Assay auf kovalente Inhibition getestet. Durch dieses Experiment konnte eine kovalente Inhibition des Enzyms ausgeschlossen werden. Die Reaktivit{\"a}t der eingesetzten „warheads" wurde gegen{\"u}ber einem Tripeptid mittels eines LC/MS-Iontrap-Systems bestimmt. Die untersuchten Verbindungen zeigten keine signifikante Reaktion mit der im Tripeptid eingebauten nukleophilen Aminos{\"a}ure Tyrosin, deren Nukleophilie bei dem pH-Wert des Tests (pH = 8.2 und 10.8) nicht hoch genug ist. Um einen Einblick in den Bindemodus der Verbindungen zu erhalten, wurden ferner Kristallisationsversuche durchgef{\"u}hrt. Die erhaltenen Kristallstrukturen zeigen, dass die Verbindungen mit dem gew{\"u}nschten Bindemodus am Zielenzym binden, aber eine kovalente Modifizierung des Tyrosins146 durch die eingesetzten „warheads" aufgrund der großen Entfernung (6 {\AA} zwischen elektrophiler Gruppe und Tyrosin146), unwahrscheinlich ist. Zus{\"a}tzlich wurden die physikochemischen Eigenschaften (Stabilit{\"a}t, Wasserl{\"o}slichkeit und logP) der Verbindung 32 sowie Verbindung 33 charakterisiert. M. tuberculosis ist der Erreger der global verbreiteten Infektionskrankheit Tuberkulose (TB), die zu den zehn h{\"a}ufigsten Todesursachen weltweit geh{\"o}rt. Das Bakterium kann das im menschlichen K{\"o}rper vorkommende Cholesterol metabolisieren und nutzt dessen Abbauprodukte als wichtige Kohlenstoffquelle. Die Thiolase FadA5 ist bei diesem Abbau ein wichtiges Enzym und konnte als potenzielles innovatives Target f{\"u}r neue Antibiotika definiert werden. Durch Dockingstudien konnten zwei potenzielle Leitstrukturen als Inhibitoren der Thiolase FadA5 identifiziert werden. Im Rahmen dieser Arbeit wurden die vorgeschlagenen Strukturen mit dem gew{\"u}nschten „warhead" synthetisiert und hinsichtlich ihrer inhibitorischen Aktivit{\"a}t gegen{\"u}ber dem Enzym untersucht. Die Zielverbindungen zeigen keine signifikante Hemmung sowie kovalente Bindung {\"u}ber die eingesetzten „warheads" an die Thiolase FadA5.}, subject = {Enoyl-acyl-carrier-protein-Reductase}, language = {de} } @phdthesis{Merget2015, author = {Merget, Benjamin}, title = {Computational methods for assessing drug-target residence times in bacterial enoyl-ACP reductases and predicting small-molecule permeability for the \(Mycobacterium\) \(tuberculosis\) cell wall}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127386}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {\textbf{Molecular Determinants of Drug-Target Residence Times of Bacterial Enoyl-ACP Reductases.} Whereas optimization processes of early drug discovery campaigns are often affinity-driven, the drug-target residence time \$t_R\$ should also be considered due to an often strong correlation with \textit{in vivo} efficacy of compounds. However, rational optimization of \$t_R\$ is not straightforward and generally hampered by the lack of structural information about the transition states of ligand association and dissociation. The enoyl-ACP reductase FabI of the fatty acid synthesis (FAS) type II is an important drug-target in antibiotic research. InhA is the FabI enzyme of \textit{Mycobacterium tuberculosis}, which is known to be inhibited by various compound classes. Slow-onset inhibition of InhA is assumed to be associated with the ordering of the most flexible protein region, the substrate binding loop (SBL). Diphenylethers are one class of InhA inhibitors that can promote such SBL ordering, resulting in long drug-target residence times. Although these inhibitors are energetically and kinetically well characterized, it is still unclear how the structural features of a ligand affect \$t_R\$. Using classical molecular dynamics (MD) simulations, recurring conformational families of InhA protein-ligand complexes were detected and structural determinants of drug-target residence time of diphenyl\-ethers with different kinetic profiles were described. This information was used to deduce guidelines for efficacy improvement of InhA inhibitors, including 5'-substitution on the diphenylether B-ring. The validity of this suggestion was then analyzed by means of MD simulations. Moreover, Steered MD (SMD) simulations were employed to analyze ligand dissociation of diphenylethers from the FabI enzyme of \textit{Staphylococcus aureus}. This approach resulted in a very accurate and quantitative linear regression model of the experimental \$ln(t_R)\$ of these inhibitors as a function of the calculated maximum free energy change of induced ligand extraction. This model can be used to predict the residence times of new potential inhibitors from crystal structures or valid docking poses. Since correct structural characterization of the intermediate enzyme-inhibitor state (EI) and the final state (EI*) of two-step slow-onset inhibition is crucial for rational residence time optimization, the current view of the EI and EI* states of InhA was revisited by means of crystal structure analysis, MD and SMD simulations. Overall, the analyses affirmed that the EI* state is a conformation resembling the 2X23 crystal structure (with slow-onset inhibitor \textbf{PT70}), whereas a twist of residues Ile202 and Val203 with a further opened helix \$\alpha 6\$ corresponds to the EI state. Furthermore, MD simulations emphasized the influence of close contacts to symmetry mates in the SBL region on SBL stability, underlined by the observation that an MD simulation of \textbf{PT155} chain A with chain B' of a symmetry mate in close proximity of the SBL region showed significantly more stable loops, than a simulation of the tetrameric assembly. Closing Part I, SMD simulations were employed which allow the delimitation of slow-onset InhA inhibitors from rapid reversible ligands. \textbf{Prediction of \textit{Mycobacterium tuberculosis} Cell Wall Permeability.} The cell wall of \textit{M. tuberculosis} hampers antimycobacterial drug design due to its unique composition, providing intrinsic antibiotic resistance against lipophilic and hydrophilic compounds. To assess the druggability space of this pathogen, a large-scale data mining endeavor was conducted, based on multivariate statistical analysis of differences in the physico-chemical composition of a normally distributed drug-like chemical space and a database of antimycobacterial--and thus very likely permeable--compounds. The approach resulted in the logistic regression model MycPermCheck, which is able to predict the permeability probability of small organic molecules based on their physico-chemical properties. Evaluation of MycPermCheck suggests a high predictive power. The model was implemented as a freely accessible online service and as a local stand-alone command-line version. Methodologies and findings from both parts of this thesis were combined to conduct a virtual screening for antimycobacterial substances. MycPermCheck was employed to screen the chemical permeability space of \textit{M. tuberculosis} from the entire ZINC12 drug-like database. After subsequent filtering steps regarding ADMET properties, InhA was chosen as an exemplary target. Docking to InhA led to a principal hit compound, which was further optimized. The quality of the interaction of selected derivatives with InhA was subsequently evaluated using MD and SMD simulations in terms of protein and ligand stability, as well as maximum free energy change of induced ligand egress. The results of the presented computational experiments suggest that compounds with an indole-3-acethydrazide scaffold might constitute a novel class of InhA inhibitors, worthwhile of further investigation.}, subject = {Computational chemistry}, language = {en} } @phdthesis{Hirschbeck2012, author = {Hirschbeck, Maria Wenefriede}, title = {Structure-based drug design on the enoyl-ACP reductases of Yersinia pestis and Burkholderia pseudomallei}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70869}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Spreading drug resistances among Gram-negative pathogens and the paucity of new agents on the antibacterial drug market against these tenacious bacteria create a pressing need for the development of new antibiotics. The bacterial fatty acid biosynthesis pathway FAS-II, especially the enoyl-ACP reductase catalyzing the last step of the elongation cycle, is an established drug target against tuberculosis but has not been extensively exploited for drug design against other bacterial pathogens. In this thesis the enoyl-ACP reductases of the Gram-negative biothreat organisms Burkholderia pseudomallei and Yersinia pestis were targeted in a structure-based drug design approach. The structure of the most recently identified enoyl-ACP isoenzyme FabV was characterized by X-ray crystallography and could be determined in three different states. FabV from B. pseudomallei was obtained in the apo-form of the enzyme, whereas FabV from Y. pestis was characterized in a binary complex with the cofactor NADH as well as in a ternary complex with NADH and the triclosan-based 2-pyridone inhibitors PT172 and PT173. Analysis of the FabV structure revealed the typical fold of the short chain dehydrogenase/reductase superfamily with the NADH-binding Rossmann fold and a substrate-binding pocket with a conserved active site geometry compared to the related isoenzyme FabI. Additional structural elements of FabV are located around the active site. The monomeric form of the enzyme is thereby stabilized and the substrate-binding loop is kept in a closed, helical conformation. The ternary complexes of FabV exhibited a similar inhibitor-binding mode as observed for triclosan inhibition in FabI and point to a potential substrate-binding mechanism. B. pseudomallei possesses FabI as an additional enoyl-ACP reductase isoenzyme, which was structurally characterized in the apo form and in ternary complexes with NAD+ and the diphenyl ether inhibitors triclosan, PT02, PT12 or PT404 as well as the 4-pyridone inhibitor PT155. The structural data of the ternary enoyl-ACP reductases complexes of B. pseudomallei and Y. pestis hold the promise for the possibility to develop antibacterials targeting FabV or even both isoenzymes, FabI and FabV, based on the triclosan scaffold.}, subject = {Yersinia}, language = {en} }