@phdthesis{Andlauer2013, author = {Andlauer, Till Felix Malte}, title = {Structural and Functional Diversity of Synapses in the Drosophila CNS}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85018}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Large-scale anatomical and functional analyses of the connectivity in both invertebrate and mammalian brains have gained intense attention in recent years. At the same time, the understanding of synapses on a molecular level still lacks behind. We have only begun to unravel the basic mechanisms of how the most important synaptic proteins regulate release and reception of neurotransmitter molecules, as well as changes of synaptic strength. Furthermore, little is known regarding the stoichiometry of presynaptic proteins at different synapses within an organism. An assessment of these characteristics would certainly promote our comprehension of the properties of different synapse types. Presynaptic proteins directly influence, for example, the probability of neurotransmitter release as well as mechanisms for short-term plasticity. We have examined the strength of expression of several presynaptic proteins at different synapse types in the central nervous system of Drosophila melanogaster using immunohistochemistry. Clear differences in the relative abundances of the proteins were obvious on different levels: variations in staining intensities appeared from the neuropil to the synaptic level. In order to quantify these differences, we have developed a ratiometric analysis of antibody stainings. By application of this ratiometric method, we could assign average ratios of presynaptic proteins to different synapse populations in two central relays of the olfactory pathway. In this manner, synapse types could be characterized by distinct fingerprints of presynaptic protein ratios. Subsequently, we used the method for the analysis of aberrant situations: we reduced levels of Bruchpilot, a major presynaptic protein, and ablated different synapse or cell types. Evoked changes of ratio fingerprints were proportional to the modifications we had induced in the system. Thus, such ratio signatures are well suited for the characterization of synapses. In order to contribute to our understanding of both the molecular composition and the function of synapses, we also characterized a novel synaptic protein. This protein, Drep-2, is a member of the Dff family of regulators of apoptosis. We generated drep-2 mutants, which did not show an obvious misregulation of apoptosis. By contrast, Drep-2 was found to be a neuronal protein, highly enriched for example at postsynaptic receptor fields of the input synapses of the major learning centre of insects, the mushroom bodies. Flies mutant for drep-2 were viable but lived shorter than wildtypes. Basic synaptic transmission at both peripheral and central synapses was in normal ranges. However, drep-2 mutants showed a number of deficiencies in adaptive behaviours: adult flies were locomotor hyperactive and hypersensitive towards ethanol-induced sedation. Moreover, the mutant animals were heavily impaired in associative learning. In aversive olfactory conditioning, drep-2 mutants formed neither short-term nor anaesthesia-sensitive memories. We could demonstrate that Drep-2 is required in mushroom body intrinsic neurons for normal olfactory learning. Furthermore, odour-evoked calcium transients in these neurons, a prerequisite for learning, were reduced in drep-2 mutants. The impairment of the mutants in olfactory learning could be fully rescued by pharmacological application of an agonist to metabotropic glutamate receptors (mGluRs). Quantitative mass spectrometry of Drep-2 complexes revealed that the protein is associated with a large number of translational repressors, among them the fragile X mental retardation protein FMRP. FMRP inhibits mGluR-mediated protein synthesis. Lack of this protein causes the fragile X syndrome, which constitutes the most frequent monogenic cause of autism. Examination of the performance of drep-2 mutants in courtship conditioning showed that the animals were deficient in both short- and long-term memory. Drep-2 mutants share these phenotypes with fmrp and mGluR mutants. Interestingly, drep-2; fmrp double mutants exhibited normal memory. Thus, we propose a model in which Drep-2 antagonizes FMRP in the regulation of mGluR-dependent protein synthesis. Our hypothesis is supported by the observation that impairments in synaptic plasticity can arise if mGluR signalling is imbalanced in either direction. We suggest that Drep-2 helps in establishing this balance.}, subject = {Taufliege}, language = {en} } @phdthesis{Aso2010, author = {Aso, Yoshinori}, title = {Dissecting the neuronal circuit for olfactory learning in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55483}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {This thesis consists of three major chapters, each of which has been separately published or under the process for publication. The first chapter is about anatomical characterization of the mushroom body of adult Drosophila melanogaster. The mushroom body is the center for olfactory learning and many other functions in the insect brains. The functions of the mushroom body have been studied by utilizing the GAL4/UAS gene expression system. The present study characterized the expression patterns of the commonly used GAL4 drivers for the mushroom body intrinsic neurons, Kenyon cells. Thereby, we revealed the numerical composition of the different types of Kenyon cells and found one subtype of the Kenyon cells that have not been described. The second and third chapters together demonstrate that the multiple types of dopaminergic neurons mediate the aversive reinforcement signals to the mushroom body. They induce the parallel memory traces that constitute the different temporal domains of the aversive odor memory. In prior to these chapters, "General introduction and discussion" section reviews and discuss about the current understanding of neuronal circuit for olfactory learning in Drosophila.}, subject = {Taufliege}, language = {en} } @phdthesis{Batsching2016, author = {Batsching, Sophie Johanna}, title = {Behavior under uncontrollable stress in \(Drosophila\) \(melanogaster\) - Learned Helplessness revisited}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145416}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {In order to select the appropriate behavior, it is important to choose the right behavior at the right time out of many options. It still remains unclear nowadays how exactly this is managed. To address this question, I expose flies (Drosophila melanogaster) to uncontrollable stress to study their behavior under restrictive circumstances by using the so-called shock box. Exposing animals to uncontrollable stress may have an impact on subsequent behavior and can last for some time. The animal learns that whatever it does, it cannot change the situation and therefore can develop something called learned helplessness. The term was first conceptualized by two American psychologists Maier and Seligman (1967), who discovered this phenomenon while doing experiments with dogs. They found out that dogs which are exposed to inescapable stress, later fail in a learning task ('shuttle box'). In this work the walking patterns of three different types of experimental flies, walking in a small dark chamber, were evaluated. Using the triadic design (Seligman and Maier, 1967), flies were either exposed to electric shock randomly (yoked), could turn it off by being active (master) or did not receive punishment at all (control). Master flies were shocked whenever they sat for more than 0.9 seconds. At the same time yoked flies received a shock as well independent of what they were doing, to ensure the same amount of shocks received and to create random punishment pattern for the yoked group. With this so-called no-idleness paradigm flies were conditioned either 10 minutes, which resulted in a short (3 minutes) after-effect, or 20 minutes that turned out to be more stable (10 minutes). In a second part, the behavior during the 20 minute conditioning and a 10 minutes post-test was described in detail. Female flies of the yoked group developed lower activity levels, longer pauses and walked more slowly than master and control flies during conditioning. In the time after the shocks while still in the box, the yoked flies also reduced the frequency and duration of walking bouts as well as their walking speed. Additionally, they took more time to resume walking after the onset of an electric shock than master flies (escape latency) and turned out to make less pauses lasting between 1-1.5 seconds which supports the finding concerning the escape latency. Male flies, tested under the same conditions, showed a slightly weaker after-effect regarding the difference between master and yoked during conditioning and post-test when compared to female flies. When comparing the 20 minutes conditioning with subsequent 10 minutes test in the heat and the shock box in parallel, one finds the same effect: Flies which do not have control over the shocks, lower their activity, make less but longer pauses and walk more slowly than their respective master flies. Despite the similar effect of heat and shock on the flies, some differences between the devices occurred, which can partly be explained by different humidity conditions as well as by different surfaces within the chambers. When the control over the shocks is given back to the yoked flies, it takes them about seven minutes to realize it. One could also show that dopamine levels in the brain were reduced in comparison to flies which did not receive shocks. Yoked flies also were impaired in a place learning task (place learning) and their reaction to light (exit from the box towards the light) directly after conditioning. After characterizing the walking behavior in the chambers, the study deals with the question whether the effects observed in the chambers transfer to different environments. In free walk they only differed from flies which did not receive electric shocks and no effect of uncontrollability was transferred to courtship behavior. Handling as the cause could be excluded. Since handling could be exclude to be the cause of losing the effect, I assumed that the behavior shown in the boxes are context depend. Not only were the after-effects of inescapable shock subject of the current research also the impact of the rearing situation on the response to electric shock was investigated in the present study. Flies which grew up in a single-reared situation turned out to be less affected by inescapable stress in both sexes. In the next part, the first steps to unravel the neuronal underpinning were taken. A mutant - fumin - which is defective in the dopamine re-uptake transporter showed less reaction to inescapable foot shocks, while a mutant for the gene which encodes an adenylate cyclase (rutabaga2080) resulted in a good score during conditioning, but showed no stable after-effect. Downregulating the expression of the adenylate cyclase gene (rutabaga) in different parts of the mushroom bodies showed, that rutabaga is necessary in the α'β'-lobes for expressing the differences between master and yoked flies in the no-idleness paradigm. The study further confirmed previous findings, that rutabaga is needed in operant but not in classical conditioning. As a result, the study could show that not the stimulus itself causes the state of uncontrollability but the fact that the fly learned that it was not in control of the stimulus. This state turned out to be context and time dependent.}, subject = {Taufliege}, language = {en} } @phdthesis{Bausenwein2000, author = {Bausenwein, Burkhard}, title = {Funktionelle Charakterisierung von Daughter of Sevenless}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-814}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {Ein Weg, der von Rezeptor-Tyrosin-Kinasen benutzt wird um Signale auf "downstream" gelegene Effektormolek{\"u}le zu {\"u}bertragen, erfolgt {\"u}ber Adaptorproteine, die Bindungsstellen f{\"u}r verschiedene Proteine zur Verf{\"u}gung stellen. Das daughter of sevenless (dos) Gen wurde in einem Screen nach Downstream-Komponenten der Sevenless (Sev) Rezeptor-Tyrosin-Kinase gefunden. Dos besitzt eine N-terminale PH-Dom{\"a}ne und mehrere Tyrosinreste in Konsensussequenzen f{\"u}r SH2-Dom{\"a}nen Bindungsstellen von verschiedenen Proteinen. Die strukturellen Merkmale von Dos und Experimente, die zeigten, daß Tyrosine im Dos Protein nach der Aktivierung von Sev phosphoryliert werden, legen den Schluß nahe, daß Dos zur Familie der Multi-Adaptor-Proteine geh{\"o}rt. Zu dieser Familie werden die Insulin-Rezeptor-Substrat (IRS) Proteine, Gab1 und Gab2 gerechnet. In dieser Arbeit wurde ein monoklonaler Maus anti-Dos Antik{\"o}rper etabliert. Das Epitop dieses Antik{\"o}rpers liegt im Bereich der C-terminalen 416 Aminos{\"a}uren des Dos Proteins. Mittels Westernblot Analysen wurde f{\"u}r Dos ein Molekulargewicht von 115 kD ermittelt. Antik{\"o}rperf{\"a}rbungen von wildtypischen Augenimaginalscheiben dritter Larven zeigten, daß das Dos Protein in Zellen in und posterior der morphogenetischen Furche exprimiert wird und in diesen Zellen apikal lokalisiert ist. Zur Charakterisierung des homozygot letalen dosR31 Allels, wurde der genomische Bereich sequenziert und die erhaltenen Daten mit der cDNA Sequenz verglichen. Die so etablierte Aminos{\"a}uresequenz f{\"u}r das DosR31 Protein hat sechs Aminos{\"a}uresubstitutionen, die m{\"o}glicherweise die Terti{\"a}rstruktur beeinflussen. Zus{\"a}tzlich wurde ein Stopcodon in Position 463 der Aminos{\"a}uresequenz gefunden. Bei dosR31 handelt es sich um ein "loss of function" Allel, das nicht in der Lage ist, die normale Dos Funktion zu erf{\"u}llen. Um die funktionelle Rolle der potentiellen SH2-Dom{\"a}nen Bindungsstellen f{\"u}r die Dos Funktion in der Rezeptor-Tyrosin-Kinasen vermittelten Signaltransduktion zu untersuchen, wurden mutierte dos Transgene in Fliegen exprimiert. Die potentiellen Bindungsstellen f{\"u}r die SH2-Dom{\"a}nen des SH2/SH3 Adaptorproteins Shc, der PhospholipaseC-g (PLCg), der regulatorische Untereinheit der Phosphatidylinositol-3-Kinase (PI3Kinase) und der Corkscrew (Csw) Tyrosin Phosphatase wurden durch den Austausch des f{\"u}r die Bindung wichtigen Tyrosins gegen ein Phenylalanin mutiert. Die ektopische Expression der mutierten Konstrukte ohne Bindungsstellen f{\"u}r die Shc, PLCg und PI3Kinasen SH2-Dom{\"a}nen konnte in Abwesenheit von endogenem Dos die fehlende Dos Funktion w{\"a}hrend der Entwicklung vollst{\"a}ndig ersetzen. Im Gegensatz dazu ist das Tyrosin 801 als nachgewiesene Bindungsstelle f{\"u}r Csw SH2-Dom{\"a}nen essentiell f{\"u}r die Funktion von Dos. Ektopische Expression von Transgene durch Hitzeschock kann zu ph{\"a}notypischen Effekten f{\"u}hren, die nicht auf das Transgen zur{\"u}ckzuf{\"u}hren sind. Um dieses Problem zu umgehen wurde das endogene dos Enhancer/Promotor Element kloniert, damit die Funktion von mutierten Transgenen auch im endogenen Expressionsmuster untersucht werden konnte. Das klonierte genE-dos Minigen war in der Lage, den Verlust von endogenem Dos in dosR31 und dosP115 Tieren vollst{\"a}ndig zu ersetzen und zeigte eine v{\"o}llig wildtypische Expression in Augenimaginalscheiben. Zur Untersuchung, welche Rolle die mutierten SH2-Dom{\"a}nen Bindungsstellen bei der Dos Funktion in der Augenentwicklung spielen, wurde ein neues in vivo Testsystem basierend auf der Flp/FRT Flipase Rekombinase Technik etabliert. Dieses klonale Testsystem erlaubt die Expression mutierter Transgene unter der Kontrolle der dos Enhancer/Promotor Sequenzen in Klonen von Zellen, denen die endogene Dos Funktion fehlt. Die klonale Analyse der mutierten Konstrukte konnte zeigen, daß das Tyrosin 801, als Bindungsstelle f{\"u}r eine Csw SH2-Dom{\"a}ne, eine essentielle Rolle f{\"u}r die Dos Funktion spielt. Die Tyrosinreste in den potentiellen SH2-Dom{\"a}nen Bindungsstellen f{\"u}r Shc, PLCg und PI3Kinase spielen hingegen keine essentielle Rolle f{\"u}r die Dos Funktion bei der Augenentwicklung. Das etablierte klonale Testsystem kann allgemein zur Untersuchung der in vivo Funktion von potentiellen Protein-Protein Interaktionsregionen im Dos Protein bei der Augenentwicklung eingesetzt werden unabh{\"a}ngig von deren Erfordernis f{\"u}r andere Entwicklungsprozesse.}, subject = {Taufliege}, language = {de} } @phdthesis{Beck2016, author = {Beck, Katherina}, title = {Einfluss von RSK auf die Aktivit{\"a}t von ERK, den axonalen Transport und die synaptische Funktion in Motoneuronen von \(Drosophila\) \(melanogaster\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130717}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {In dieser Arbeit sollte die Funktion von RSK in Motoneuronen von Drosophila untersucht werden. Mutationen im RSK2-Gen verursachen das Coffin-Lowry-Syndrom (CLS), das durch mentale Retardierung charakterisiert ist. RSK2 ist haupts{\"a}chlich in Regionen des Gehirns exprimiert, in denen Lernen und Ged{\"a}chtnisbildung stattfinden. In M{\"a}usen und Drosophila, die als Modellorganismen f{\"u}r CLS dienen, konnten auf makroskopischer Ebene keine Ver{\"a}nderungen in den Hirnstrukturen gefunden werden, dennoch wurden in verschiedenen Verhaltensstudien Defekte im Lernen und der Ged{\"a}chtnisbildung beobachtet. Die synaptische Plastizit{\"a}t und die einhergehenden Ver{\"a}nderungen in den Eigenschaften der Synapse sind fundamental f{\"u}r adaptives Verhalten. Zur Analyse der synaptischen Plastizit{\"a}t eignet sich das neuromuskul{\"a}re System von Drosophila als Modell wegen des stereotypen Innervierungsmusters und der Verwendung ionotroper Glutamatrezeptoren, deren Untereinheiten homolog sind zu den Untereinheiten der Glutamatrezeptoren des AMPA-Typs aus S{\"a}ugern, die wesentlich f{\"u}r die Bildung von LTP im Hippocampus sind. Zun{\"a}chst konnte gezeigt werden, dass RSK in den Motoneuronen von Drosophila an der pr{\"a}synaptischen Seite lokalisiert ist, wodurch RSK eine Synapsen-spezifische Funktion aus{\"u}ben k{\"o}nnte. Morphologische Untersuchungen der Struktur der neuromuskul{\"a}ren Synapsen konnten aufzeigen, dass durch den Verlust von RSK die Gr{\"o}ße der neuromuskul{\"a}ren Synapse, der Boutons sowie der Aktiven Zonen und Glutamatrezeptorfelder reduziert ist. Obwohl mehr Boutons gebildet werden, sind weniger Aktive Zonen und Glutamatrezeptorfelder in der neuromuskul{\"a}ren Synapse enthalten. RSK reguliert die synaptische Transmission, indem es die postsynaptische Sensitivit{\"a}t, nicht aber die Freisetzung der Neurotransmitter an der pr{\"a}synaptischen Seite beeinflusst, obwohl in immunhistochemischen Analysen eine postsynaptische Lokalisierung von RSK nicht nachgewiesen werden konnte. RSK ist demnach an der Regulation der synaptischen Plastizit{\"a}t glutamaterger Synapsen beteiligt. Durch immunhistochemische Untersuchungen konnte erstmals gezeigt werden, dass aktiviertes ERK an der pr{\"a}synaptischen Seite lokalisiert ist und diese synaptische Lokalisierung von RSK reguliert wird. Dar{\"u}ber hinaus konnte in dieser Arbeit nachgewiesen werden, dass durch den Verlust von RSK hyperaktiviertes ERK in den Zellk{\"o}rpern der Motoneurone vorliegt. RSK wird durch den ERK/MAPK-Signalweg aktiviert und {\"u}bernimmt eine Funktion sowohl als Effektorkinase als auch in der Negativregulation des Signalwegs. Demnach dient RSK in den Zellk{\"o}rpern der Motoneurone als Negativregulator des ERK/MAPK-Signalwegs. Dar{\"u}ber hinaus k{\"o}nnte RSK die Verteilung von aktivem ERK in den Subkompartimenten der Motoneurone regulieren. Da in vorangegangenen Studien gezeigt werden konnte, dass ERK an der Regulation der synaptischen Plastizit{\"a}t beteiligt ist, indem es die Insertion der AMPA-Rezeptoren zur Bildung der LTP reguliert, sollte in dieser Arbeit aufgekl{\"a}rt werden, ob der Einfluss von RSK auf die synaptische Plastizit{\"a}t durch seine Funktion als Negativregulator von ERK zustande kommt. Untersuchungen der genetischen Interaktion von rsk und rolled, dem Homolog von ERK in Drosophila, zeigten, dass die durch den Verlust von RSK beobachtete reduzierte Gesamtzahl der Aktiven Zonen und Glutamatrezeptorfelder der neuromuskul{\"a}ren Synapse auf die Funktion von RSK als Negativregulator von ERK zur{\"u}ckzuf{\"u}hren ist. Die Gr{\"o}ße der neuromuskul{\"a}ren Synapse sowie die Gr{\"o}ße der Aktiven Zonen und Glutamatrezeptorfelder beeinflusst RSK allerdings durch seine Funktion als Effektorkinase des ERK/MAPK-Signalwegs. Studien des axonalen Transports von Mitochondrien zeigten, dass dieser in vielen neuropathologischen Erkrankungen beeintr{\"a}chtigt ist. Die durchgef{\"u}hrten Untersuchungen des axonalen Transports in Motoneuronen konnten eine neue Funktion von RSK in der Regulation des axonalen Transports aufdecken. In den Axonen der Motoneurone von RSK-Nullmutanten wurden BRP- und CSP-Agglomerate nachgewiesen. RSK k{\"o}nnte an der Regulation des axonalen Transports von pr{\"a}synaptischem Material beteiligt sein. Durch den Verlust von RSK wurden weniger Mitochondrien in anterograder Richtung entlang dem Axon transportiert, daf{\"u}r verweilten mehr Mitochondrien in station{\"a}ren Phasen. Diese Ergebnisse zeigen, dass auch der anterograde Transport von Mitochondrien durch den Verlust von RSK beeintr{\"a}chtigt ist.}, subject = {Taufliege}, language = {de} } @phdthesis{Beck2019, author = {Beck, Sebastian}, title = {Using optogenetics to influence the circadian clock of \(Drosophila\) \(melanogaster\)}, doi = {10.25972/OPUS-18495}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184952}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Almost all life forms on earth have adapted to the most impactful and most predictable recurring change in environmental condition, the cycle of day and night, caused by the axial rotation of the planet. As a result many animals have evolved intricate endogenous clocks, which adapt and synchronize the organisms' physiology, metabolism and behaviour to the daily change in environmental conditions. The scientific field researching these endogenous clocks is called chronobiology and has steadily grown in size, scope and relevance since the works of the earliest pioneers in the 1960s. The number one model organism for the research of circadian clocks is the fruit fly, Drosophila melanogaster, whose clock serves as the entry point to understanding the basic inner workings of such an intricately constructed endogenous timekeeping system. In this thesis it was attempted to combine the research on the circadian clock with the techniques of optogenetics, a fairly new scientific field, launched by the discovery of Channelrhodopsin 2 just over 15 years ago. Channelrhodopsin 2 is a light-gated ion channel found in the green alga Chlamydomonas reinhardtii. In optogenetics, researches use these light-gated ion channels like Channelrhodopsin 2 by heterologously expressing them in cells and tissues of other organisms, which can then be stimulated by the application of light. This is most useful when studying neurons, as these channels provide an almost non-invasive tool to depolarize the neuronal plasma membranes at will. The goal of this thesis was to develop an optogenetic tool, which would be able to influence and phase shift the circadian clock of Drosophila melanogaster upon illumination. A phase shift is the adaptive response of the circadian clock to an outside stimulus that signals a change in the environmental light cycle. An optogenetic tool, able to influence and phase shift the circadian clock predictably and reliably, would open up many new ways and methods of researching the neuronal network of the clock and which neurons communicate to what extent, ultimately synchronizing the network. The first optogenetic tool to be tested in the circadian clock of Drosophila melanogaster was ChR2-XXL, a channelrhodopsin variant with dramatically increased expression levels and photocurrents combined with a prolonged open state. The specific expression of ChR2-XXL and of later constructs was facilitated by deploying the three different clock-specific GAL4-driver lines, clk856-gal4, pdf-gal4 and mai179-gal4. Although ChR2-XXL was shown to be highly effective at depolarizing neurons, these stimulations proved to be unable to significantly phase shift the circadian clock of Drosophila. The second series of experiments was conducted with the conceptually novel optogenetic tools Olf-bPAC and SthK-bPAC, which respectively combine a cyclic nucleotide-gated ion channel (Olf and SthK) with the light-activated adenylyl-cyclase bPAC. These tools proved to be quite useful when expressed in the motor neurons of instar-3 larvae of Drosophila, paralyzing the larvae upon illumination, as well as affecting body length. This way, these new tools could be precisely characterized, spawning a successfully published research paper, centered around their electrophysiological characterization and their applicability in model organisms like Drosophila. In the circadian clock however, these tools caused substantial damage, producing severe arrhythmicity and anomalies in neuronal development. Using a temperature-sensitive GAL80-line to delay the expression until after the flies had eclosed, yielded no positive results either. The last series of experiments saw the use of another new series of optogenetic tools, modelled after the Olf-bPAC, with bPAC swapped out for CyclOp, a membrane-bound guanylyl-cyclase, coupled with less potent versions of the Olf. This final attempt however also ended up being unsuccessful. While these tools could efficiently depolarize neuronal membranes upon illumination, they were ultimately unable to stimulate the circadian clock in way that would cause it to phase shift. Taken together, these mostly negative results indicate that an optogenetic manipulation of the circadian clock of Drosophila melanogaster is an extremely challenging subject. As light already constitutes the most impactful environmental factor on the circadian clock, the combination of chronobiology with optogenetics demands the parameters of the conducted experiments to be tuned with an extremely high degree of precision, if one hopes to receive positive results from these types of experiments at all.}, subject = {Chronobiologie}, language = {en} } @phdthesis{Bertolucci2008, author = {Bertolucci, Franco}, title = {Operant and classical learning in Drosophila melanogaster: the ignorant gene (ign)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33984}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {One of the major challenges in neuroscience is to understand the neuronal processes that underlie learning and memory. For example, what biochemical pathways underlie the coincidence detection between stimuli during classical conditioning, or between an action and its consequences during operant conditioning? In which neural substructures is this information stored? How similar are the pathways mediating these two types of associative learning and at which level do they diverge? The fly Drosophila melanogaster is an appropriate model organism to address these questions due to the availability of suitable learning paradigms and neurogenetic tools. It permits an extensive study of the functional role of the gene S6KII which in Drosophila had been found to be differentially involved in classical and operant conditioning (Bertolucci, 2002; Putz et al., 2004). Genomic rescue experiments showed that olfactory conditioning in the Tully machine, a paradigm for Pavlovian olfactory conditioning, depends on the presence of an intact S6KII gene. This rescue was successfully performed on both the null mutant and a partial deletion, suggesting that the removal of the phosphorylating unit of the kinase was the main cause of the functional defect. The GAL4/UAS system was used to achieve temporal and spatial control of S6KII expression. It was shown that expression of the kinase during the adult stage was essential for the rescue. This finding ruled out a developmental origin of the mutant learning phenotype. Furthermore, targeted spatial rescue of S6KII revealed a requirement in the mushroom bodies and excluded other brain structures like the median bundle, the antennal lobes and the central complex. This pattern is very similar to the one previously identified with the rutabaga mutant (Zars et al., 2000). Experiments with the double mutant rut, ign58-1 suggest that both rutabaga and S6KII operate in the same signalling pathway. Previous studies had already shown that deviating results from operant and classical conditioning point to different roles for S6KII in the two types of learning (Bertolucci, 2002; Putz, 2002). This conclusion was further strengthened by the defective performance of the transgenic lines in place learning and their normal behavior in olfactory conditioning. A novel type of learning experiment, called "idle experiment", was designed. It is based on the conditioning of the walking activity and represents a purely operant task, overcoming some of the limitations of the "standard" heat-box experiment, a place learning paradigm. The novel nature of the idle experiment allowed exploring "learned helplessness" in flies, unveiling astonishing similarities to more complex organisms such as rats, mice and humans. Learned helplessness in Drosophila is found only in females and is sensitive to antidepressants.}, subject = {Klassische Konditionierung}, language = {en} } @phdthesis{BlancoRedondo2014, author = {Blanco Redondo, Beatriz}, title = {Studies of synapsin phosphorylation and characterization of monoclonal antibodies from the W{\"u}rzburg Hybridoma Library in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93766}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Synapsins are conserved synapse-associated hosphoproteins involved in the fine regulation of neurotransmitter release. The aim of the present project is to study the phosphorylation of synapsins and the distribution of phospho-synapsin in the brain of Drosophila melanogaster. Three antibodies served as important tools in this work, a monoclonal antibody (3C11/α-Syn) that recognizes all known synapsin isoforms and two antisera against phosphorylated synapsin peptides (antiserum PSyn(S6) against phospho-serine 6 and antiserum PSyn(S464) against phospho-serine 464). These antisera were recently generated in collaboration with Bertram Gerber and Eurogentec. ...}, subject = {Synapsine}, language = {en} } @phdthesis{BoltUlschmid2004, author = {Bolt-Ulschmid, Julia Katharina}, title = {Charakterisierung von Adenylatkinasen aus Plasmodium falciparum und Thioredoxinreduktase-assoziierten Proteinen aus Dipteren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10752}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {In S{\"a}ugetieren existieren im wesentlichen zwei Abwehrsysteme gegen oxidativen Streß, in welchen die Glutathionreduktase (GR) und Thioredoxinreduktase (TrxR) Schl{\"u}sselenzyme sind. Ein einzelnes Gen der Taufliege, genannt dmtrxr-1, kodiert sowohl f{\"u}r die durch alternatives Splicing entstehende cytoplasmatische und mitochondriale Form der DmTrxR-1. Zum Teil innerhalb des dmtrxr-1-Gens findet sich auf dem Komplement{\"a}rstrang ein weiteres Gen, welches sniffer genannt wurde. In Kooperation wurde nachgewiesen, daß dieses Gen essentiell zur Verhinderung alterungsbedingter Neurodegeneration ist. Durch biochemische Charakterisierung konnte das rekombinant hergestellte Produkt dieses Gens in der vorliegenden Arbeit als Carbonylreduktase, ein zu den Kurzketten-Dehydrogenasen (short-chain dehydrogenases) geh{\"o}rendes Enzym, identifiziert werden. Sniffer weist das f{\"u}r Carbonylreduktasen typische Substratspektrum mit Phenanthrenequinone als bestem Substrat auf und wird von Flavonoiden wie Quercetin und Rutin sowie Hydroxymercuribenzoat gehemmt. In verschiedenen Ans{\"a}tzen konnten Kristalle des rekombinanten Proteins gewonnen werden, die inzwischen in Kooperation vermessen wurden und so zu einer Kristallstruktur mit einer Aufl{\"o}sung von 1,7 Angstr{\"o}m f{\"u}hrten. Durch diese Arbeiten konnte zum ersten Mal eine Verbindung zwischen einem charakterisierten Gen (snifffer), oxidativem Streß und neurodegenerativen Effekten auf molekularer Ebene nachgewiesen werden. Parasiten haben w{\"a}hrend ihres Lebenszyklus einen hohen Bedarf an Energie und sind abh{\"a}ngig von einer starken Syntheseleistung. Zur Bew{\"a}ltigung dieses Stresses ben{\"o}tigen sie hohe Aktivit{\"a}ten an Adenylatkinase (AK; ATP + AMP \&\#61683; 2 ADP) und GTP-AMP-Phosphotransferase (GAK; GTP + AMP \&\#61683; GDP + ADP). Beide Enzyme wurden in Blutstadien des Malariaparasiten Plasmodium falciparum identifiziert und die entsprechenden Gene der PfAK und PfGAK auf den Chromosomen 10 und 4 respektive lokalisiert. Klonierung und heterologe Expression in E. coli ergab enzymatisch aktive Proteine mit einer Gr{\"o}ße von 28,9 (PfAK), bzw. 28,0 kDa (PfGAK). Das rekombinante Protein der PfAK entspricht in seinen biochemischen Charakteristika denen der authentischen PfAK. Dies gilt auch f{\"u}r eine m{\"o}gliche Assoziation mit einem stabilisierenden Protein mit einem Molekulargewicht von ca. 70 kDa und der hohen Substratspezifit{\"a}t f{\"u}r das Monophosphat-Nukleotid AMP. Die Spezifit{\"a}t f{\"u}r das Triphosphat-Substrat ist weniger stringent. Das beste Triphosphat-Substrat ist ATP mit einem Vmax-Wert von 75 U/mg und einem kcat von 2800 min-1. Die Sequenz der PfAK enth{\"a}lt eine amphiphatische Helix, welche als notwendig f{\"u}r die Translokation zytosolischer Adenylatkinasen in den Intermembranraum der Mitochondrien beschrieben wurde. Die PfGAK bevorzugt GTP und AMP als Substrat (100 U/mg; kcat = 2800 min-1 bei 25°C) und zeigt als Besonderheit keine messbare Aktivit{\"a}t mit ATP. Im Gegensatz zu ihrem Ortholog im Menschen (AK3) enth{\"a}lt die Sequenz der PfGAK ein Zinkfinger-Motiv und bindet Eisenionen. Erste Immunfluoreszenz-Analysen lokalisieren die PfGAK in den Mitochondrien. PfAK und PfGAK werden von den Dinukleosid-Pentaphosphat-Verbindungen AP5A beziehungsweise GP5A gehemmt. Die Ki-Werte liegen mit ca. 0.2 µM ungef{\"a}hr 250-fach niedriger als die KM-Werte der entsprechenden Nukleotidsubstrate. Zur L{\"o}sung der vor allem im Rahmen einer rationalen Medikamentenentwicklung notwendigen Kristallstruktur des Zielmolek{\"u}ls konnten bereits Kristalle der PfGAK erhalten werden.}, subject = {Taufliege}, language = {de} } @phdthesis{Brembs2000, author = {Brembs, Bj{\"o}rn}, title = {An Analysis of Associative Learning in Drosophila at the Flight Simulator}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1039}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {Most natural learning situations are of a complex nature and consist of a tight conjunction of the animal's behavior (B) with the perceived stimuli. According to the behavior of the animal in response to these stimuli, they are classified as being either biologically neutral (conditioned stimuli, CS) or important (unconditioned stimuli, US or reinforcer). A typical learning situation is thus identified by a three term contingency of B, CS and US. A functional characterization of the single associations during conditioning in such a three term contingency has so far hardly been possible. Therefore, the operational distinction between classical conditioning as a behavior-independent learning process (CS-US associations) and operant conditioning as essentially behavior-dependent learning (B-US associations) has proven very valuable. However, most learning experiments described so far have not been successful in fully separating operant from classical conditioning into single-association tasks. The Drosophila flight simulator in which the relevant behavior is a single motor variable (yaw torque), allows for the first time to completely separate the operant (B-US, B-CS) and the classical (CS-US) components of a complex learning situation and to examine their interactions. In this thesis the contributions of the single associations (CS-US, B-US and B-CS) to memory formation are studied. Moreover, for the first time a particularly prominent single association (CS-US) is characterized extensively in a three term contingency. A yoked control shows that classical (CS-US) pattern learning requires more training than operant pattern learning. Additionally, it can be demonstrated that an operantly trained stimulus can be successfully transferred from the behavior used during training to a new behavior in a subsequent test phase. This result shows unambiguously that during operant conditioning classical (CS-US) associations can be formed. In an extension to this insight, it emerges that such a classical association blocks the formation of an operant association, which would have been formed without the operant control of the learned stimuli. Instead the operant component seems to develop less markedly and is probably merged into a complex three-way association. This three-way association could either be implemented as a sequential B-CS-US or as a hierarchical (B-CS)-US association. The comparison of a simple classical (CS-US) with a composite operant (B, CS and US) learning situation and of a simple operant (B-US) with another composite operant (B, CS and US) learning situation, suggests a hierarchy of predictors of reinforcement. Operant behavior occurring during composite operant conditioning is hardly conditioned at all. The associability of classical stimuli that bear no relation to the behavior of the animal is of an intermediate value, as is operant behavior alone. Stimuli that are controlled by operant behavior accrue associative strength most easily. If several stimuli are available as potential predictors, again the question arises which CS-US associations are formed? A number of different studies in vertebrates yielded amazingly congruent results. These results inspired to examine and compare the properties of the CS-US association in a complex learning situation at the flight simulator with these vertebrate results. It is shown for the first time that Drosophila can learn compound stimuli and recall the individual components independently and in similar proportions. The attempt to obtain second-order conditioning with these stimuli, yielded a relatively small effect. In comparison with vertebrate data, blocking and sensory preconditioning experiments produced conforming as well as dissenting results. While no blocking could be found, a sound sensory preconditioning effect was obtained. Possible reasons for the failure to find blocking are discussed and further experiments are suggested. The sensory preconditioning effect found in this study is revealed using simultaneous stimulus presentation and depends on the amount of preconditioning. It is argued that this effect is a case of 'incidental learning', where two stimuli are associated without the need of reinforcement. Finally, the implications of the results obtained in this study for the general understanding of memory formation in complex learning situations are discussed.}, subject = {Taufliege}, language = {en} } @phdthesis{Chen2018, author = {Chen, Jiangtian}, title = {Functions of allatostatin A (AstA) and myoinhibitory peptides (MIPs) in the regulation of food intake and sleep in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156838}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Neuropeptides and peptide hormones carrying neural or physiological information are intercellular signalling substances. They control most if not all biological processes in vertebrates and invertebrates by acting on specific receptors on the target cell. In mammals, many different neuropeptides and peptide hormones are involved in the regulation of feeding and sleep. In \textit{Drosophila}, allatostatin A (AstA) and myoinhibitory peptides (MIPs) are brain-gut peptides. The AstA receptors are homologues of the mammalian galanin receptors and the amino acid sequences of MIPs are similar to a part of galanin, which has an orexigenic effect and is implicated in the control of sleep behaviour in mammals. I am interested in dissecting pleiotropic functions of AstA and MIPs in the regulation of food intake and sleep in \textit{Drosophila}. \par In the first part of the dissertation the roles of brain-gut peptide allatostatin A are analysed. Due to the genetic and molecular tools available, the fruit fly \textit{Drosophila melanogaster} is chosen to investigate functions of AstA. The aims in this part are to identify pleiotropic functions of AstA and assign specific effects to the activity of certain subsets of AstA expressing cells in \textit{Drosophila} adults. A new and restricted \textit{AstA\textsuperscript{34}-Gal4} line was generated. The confocal imaging result showed that AstA neurons are located in the posterior lateral protocerebrum (PLP), the gnathal ganglia (GNG), the medullae, and thoracic-abdominal ganglion (TAG). AstA producing DLAa neurons in the TAG innervate hindgut and the poterior part of midgut. In addition, AstA are detected in the enteroendocrine cells (EECs).\par Thermogenetic activation and neurogenetic silencing tools with the aid of the \textit{UAS/Gal4} system were employed to manipulate the activity of all or individual subsets of AstA cells and investigate the effects on food intake, locomotor activity and sleep. Our experimental results showed that thermogenetic activation of two pairs of PLP neurons and/or AstA expressing EECs reduced food intake, which can be traced to AstA signalling by using \textit{AstA} mutants. In the locomotor activity, thermogenetic activation of two pairs of PLP neurons and/or AstA expressing EECs resulted in strongly inhibited locomotor activity and promoted sleep without sexual difference, which was most apparent during the morning and evening activity peaks. The experimental and control flies were not impaired in climbing ability. In contrast, conditional silencing of the PLP neurons and/or AstA expressing EECs reduced sleep specifically in the siesta. The arousal experiment was employed to test for the sleep intensity. Thermogenetically activated flies walked significantly slower and a shorter distance than controls for all arousal stimulus intensities. Furthermore, PDF receptor was detected in the PLP neurons and the PLP neurons reacted with an intracellular increase of cAMP upon PDF, only when PDF receptor was present. Constitutive activation of AstA cells by tethered PDF increased sleep and thermogenetic activation of the PDF producing sLNvs promoted sleep specifically in the morning and evening. \par The study shows that the PLP neurons and/or EECs vis AstA signalling subserve an anorexigenic and sleep-regulating function in \textit{Drosophila}. The PLP neurons arborise in the posterior superior protocerebrum, where the sleep relevant dopaminergic neurons are located, and EECs extend themselves to reach the gut lumen. Thus, the PLP neurons are well positioned to regulate sleep and EECs potentially modulate feeding and possibly locomotor activity and sleep during sending the nutritional information from the gut to the brain. The results of imaging, activation of the PDF signalling pathway by tethered PDF and thermoactivation of PDF expressing sLNvs suggest that the PLP neurons are modulated by PDF from sLNv clock neurons and AstA in PLP neurons is the downstream target of the central clock to modulate locomotor activity and sleep. AstA receptors are homologues of galanin receptors and both of them are involved in the regulation of feeding and sleep, which appears to be conserved in evolutionary aspect.\par In the second part of the dissertation, I analysed the role of myoinhibitory peptides. MIPs are brain-gut peptides in insects and polychaeta. Also in \textit{Drosophila}, MIPs are expressed in the CNS and EECs in the gut. Previous studies have demonstrated the functions of MIPs in the regulation of food intake, gut motility and ecdysis in moths and crickets. Yet, the functions of MIPs in the fruit fly are little known. To dissect effects of MIPs regarding feeding, locomotor activity and sleep in \textit{Drosophila melanogater}, I manipulated the activity of MIP\textsuperscript{W{\"U}} cells by using newly generated \textit{Mip\textsuperscript{W{\"U}}-Gal4} lines. Thermogenetical activation or genetical silencing of MIP\textsuperscript{W{\"U}} celles did not affect feeding behaviour and resulted in changes in the sleep status. \par My results are in contradiction to a recent research of Min Soohong and colleagues who demonstrated a role of MIPs in the regulation of food intake and body weight in \textit{Drosophila}. They showed that constitutive silencing of MIP\textsuperscript{KR} cells increased food intake and body weight, whereas thermogenetic activation of MIP\textsuperscript{KR} cells decreased food intake and body weight by using \textit{Mip\textsuperscript{KR}-Gal4} driver. Then I repeated the experiments with the \textit{Mip\textsuperscript{KR}-Gal4} driver, but could not reproduce the results. Interestingly, I just observed the opposite phenotype. When MIP\textsuperscript{KR} cells were silenced by expressing UAS-tetanus toxin (\textit{UAS-TNT}), the \textit{Mip\textsuperscript{KR}\$>\$TNT} flies showed reduced food intake. The thermogenetic activation of MIP\textsuperscript{KR} cells did not affect food intake. Furthermore, I observed that the thermogenetic activation of MIP\textsuperscript{KR} cells strongly reduced the sleep duration.\par In the third part of the dissertation, I adapted and improved a method for metabolic labelling for \textit{Drosophila} peptides to quantify the relative amount of peptides and the released peptides by mass spectrometry under different physiological and behavioural conditions. qRT-PCR is a practical technique to measure the transcription and the corresponding mRNA level of a given peptide. However, this is not the only way to measure the translation and production of peptides. Although the amount of peptides can be quantified by mass spectrometry, it is not possible to distinguish between peptides stored in vesicles and released peptides in CNS extracts. I construct an approach to assess the released peptides, which can be calculated by comparing the relative amount of peptides between two timepoints in combination with the mRNA levels which can be used as semiquantitative proxy reflecting the production of peptides during this period. \par After optimizing the protocol for metabolic labelling, I carried out a quantitative analysis of peptides before and after eclosion as a test. I was able to show that the EH- and SIFa-related peptides were strongly reduced after eclosion. This is in line with the known function and release of EH during eclosion. Since this test was positive, I next used the metabolic labelling in \textit{Drosophila} adult, which were either fed \textit{ad libitum} or starved for 24 hrs, and analysed the effects on the amount of AstA and MIPs. In the mRNA level, my results showed that in the brain \textit{AstA} mRNA level in the 24 hrs starved flies was increased compared to in the \textit{ad libitum} fed flies, whereas in the gut the \textit{AstA} mRNA level was decreased. Starvation induced the reduction of \textit{Mip} mRNA level in the brain and gut. Unfortunately, due to technical problems I was unable to analyse the metabolic labelled peptides during the course of this thesis.\par}, subject = {AstA}, language = {en} } @phdthesis{Chen2012, author = {Chen, Yi-chun}, title = {Experimental access to the content of an olfactory memory trace in larval Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83705}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Animals need to evaluate their experiences in order to cope with new situations they encounter. This requires the ability of learning and memory. Drosophila melanogaster lends itself as an animal model for such research because elaborate genetic techniques are available. Drosphila larva even saves cellular redundancy in parts of its nervous system. My Thesis has two parts dealing with associative olfactory learning in larval Drosophila. Firstly, I tackle the question of odour processing in respect to odour quality and intensity. Secondly, by focusing on the evolutionarily conserved presynaptic protein Synapsin, olfactory learning on the cellular and molecular level is investigated. Part I.1. provides a behaviour-based estimate of odour similarity in larval Drosophila by using four recognition-type experiments to result in a combined, task-independent estimate of perceived difference between odour-pairs. A further comparison of these combined perceived differences to published calculations of physico-chemical difference reveals a weak correlation between perceptual and physico-chemical similarity. Part I.2. focuses on how odour intensity is interpreted in the process of olfactory learning in larval Drosophila. First, the dose-effect curves of learnability across odour intensities are described in order to choose odour intensities such that larvae are trained at intermediate odour intensity, but tested for retention either with that trained intermediate odour intensity, or with respectively HIGHer or LOWer intensities. A specificity of retention for the trained intensity is observed for all the odours used. Such intensity specificity of learning adds to appreciate the richness in 'content' of olfactory memory traces, and to define the demands on computational models of associative olfactory memory trace formation. In part II.1. of the thesis, the cellular site and molecular mode of Synapsin function is investigated- an evolutionarily conserved, presynaptic vesicular phosphoprotein. On the cellular level, the study shows a Synapsin-dependent memory trace in the mushroom bodies, a third-order "cortical" brain region of the insects; on the molecular level, Synapsin engages as a downstream element of the AC-cAMP-PKA signalling cascade.}, subject = {Taufliege}, language = {en} } @phdthesis{Chouhan2017, author = {Chouhan, Nitin Singh}, title = {Time-odor learning in \(Drosophila\) \(melanogaster\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145675}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Endogenous clocks help animals to anticipate the daily environmental changes. These internal clocks rely on environmental cues, called Zeitgeber, for synchronization. The molecular clock consists of transcription-translation feedback loops and is located in about 150 neurons (Helfrich-F{\"o}rster and Homberg, 1993; Helfrich-F{\"o}rster, 2005). The core clock has the proteins Clock (CLK) and Cycle (CYC) that together act as a transcription activator for period (per) and timeless (tim) which then, via PER and TIM block their own transcription by inhibiting CLK/CYC activity (Darlington et al., 1998; Hardin, 2005; Dubruille and Emery, 2008). Light signals trigger the degradation of TIM through a blue-light sensing protein Cryptochrome (CRY) and thus, allows CLK/CYC to resume per and tim transcription (Emery et al., 1998; Stanewsky et al., 1998). Therefore, light acts as an important Zeitgeber for the clock entrainment. The mammalian clock consists of similarly intertwined feedback loops. Endogenous clocks facilitate appropriate alterations in a variety of behaviors according to the time of day. Also, these clocks can provide the phase information to the memory centers of the brain to form the time of day related associations (TOD). TOD memories promote appropriate usage of resources and concurrently better the survival success of an animal. For instance, animals can form time-place associations related to the availability of a biologically significant stimulus like food or mate. Such memories will help the animal to obtain resources at different locations at the appropriate time of day. The significance of these memories is supported by the fact that many organisms including bees, ants, rats and mice demonstrate time-place learning (Biebach et al. 1991; Mistlberger et al. 1997; Van der Zee et al. 2008; Wenger et al. 1991). Previous studies have shown that TOD related memories rely on an internal clock, but the identity of the clock and the underlying mechanism remain less well understood. The present study demonstrates that flies can also form TOD associated odor memories and further seeks to identify the appropriate mechanism. Hungry flies were trained in the morning to associate odor A with the sucrose reward and subsequently were exposed to odor B without reward. The same flies were exposed in the afternoon to odor B with and odor A without reward. Two cycles of the 65 reversal training on two subsequent days resulted in the significant retrieval of specific odor memories in the morning and afternoon tests. Therefore, flies were able to modulate their odor preference according to the time of day. In contrast, flies trained in a non-reversal manner were unable to form TOD related memories. The study also demonstrates that flies are only able to form time-odor memories when the two reciprocal training cycles occur at a minimum 6 h interval. This work also highlights the role of the internal state of flies in establishing timeodor memories. Prolonged starvation motivates flies to appropriate their search for the food. It increases the cost associated with a wrong choice in the T-maze test as it precludes the food discovery. Accordingly, an extended starvation promotes the TOD related changes in the odor preference in flies already with a single cycle of reversal training. Intriguingly, prolonged starvation is required for the time-odor memory acquisition but is dispensable during the memory retrieval. Endogenous oscillators promote time-odor associations in flies. Flies in constant darkness have functional rhythms and can form time-odor memories. In contrast, flies kept in constant light become arrhythmic and demonstrated no change in their odor preference through the day. Also, clock mutant flies per01 and clkAR, show compromised performance compared to CS flies when trained in the time-odor conditioning assay. These results suggest that flies need a per and clk dependent oscillator for establishing TOD related memories. Also, the clock governed rhythms are necessary for the timeodor memory acquisition but not for the retrieval. Pigment-Dispersing Factor (PDF) neuropeptide is a clock output factor (Park and Hall, 1998; Park et al., 2000; Helfrich-F{\"o}rster, 2009). pdf01 mutant flies are unable to form significant time-odor memories. PDF is released by 8 neurons per hemisphere in the fly brain. This cluster includes the small (s-LNvs) and large (l-LNvs) ventral lateral neurons. Restoring PDF in these 16 neurons in the pdf01 mutant background rescues the time-odor learning defect. The PDF neuropeptide activates a seven transmembrane G-protein coupled receptor (PDFR) which is broadly expressed in the fly brain (Hyun et al., 2005). The present study shows that the expression of PDFR in about 10 dorsal neurons (DN1p) is sufficient for robust time-odor associations in flies. 66 In conclusion, flies use distinct endogenous oscillators to acquire and retrieve time-odor memories. The first oscillator is light dependent and likely signals through the PDF neuropeptide to promote the usage of the time as an associative cue during appetitive conditioning. In contrast, the second clock is light independent and specifically signals the time information for the memory retrieval. The identity of this clock and the underlying mechanism are open to investigation.}, subject = {Taufliege}, language = {en} } @phdthesis{Cook2012, author = {Cook, Mandy}, title = {The neurodegenerative Drosophila melanogaster AMPK mutant loechrig}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72027}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {In dieser Doktorarbeit wird die Drosophila Mutante loechrig (loe), die progressive Degeneration des Nervensystems aufweist, weiter beschrieben. In der loe Mutante fehlt eine neuronale Isoform der γ- Untereinheit der Proteinkinase AMPK (AMP-activated protein kinase). Die heterotrimere AMPK (auch als SNF4Aγ bekannt) kontrolliert das Energieniveau der Zelle, was st{\"a}ndiges Beobachten des ATP/AMP- Verh{\"a}ltnis erfordert. AMPK wird durch niedrige Energiekonzentrationen und Beeintr{\"a}chtigungen im Metabolismus, wie zum Beispiel Sauerstoffmangel, aktiviert und reguliert mehrere wichtige Signaltransduktionswege, die den Zellmetabolismus kontrollieren. Jedoch ist die Rolle von AMPK im neuronalen {\"U}berleben noch unklar. Eines der Proteine, dass von AMPK reguliert wird, ist HMGR (hydroxymethylglutaryl-CoA- reductase), ein Schl{\"u}sselenzym in der Cholesterin- und Isoprenoidsynthese. Es wurde gezeigt, dass wenn die Konzentration von HMGR manipuliert wird, auch der Schweregrad des neurodegenerativen Ph{\"a}notyps in loe beeinflusst wird. Obwohl die regulatorische Rolle von AMPK auf HMGR in Drosophila konserviert ist, k{\"o}nnen Insekten Cholesterin nicht de novo synthetisieren. Dennoch ist der Syntheseweg von Isoprenoiden zwischen Vertebraten und Insekten evolution{\"a}r konserviert. Isoprenylierung von Proteinen, wie zum Beispiel von kleinen G-Proteinen, stellt den Proteinen einen hydophobischen Anker bereit, mit denen sie sich an die Zellmembran binden k{\"o}nnen, was in anschließender Aktivierung resultieren kann. In dieser Doktorarbeit wird gezeigt, dass die loe Mutation die Prenylierung von Rho1 und den LIM-Kinasesignalweg beeinflusst, was eine wichtige Rolle im Umsatz von Aktin und axonalem Auswachsen spielt. Die Ergebnisse weisen darauf hin, dass die Mutation in LOE, Hyperaktivit{\"a}t des Isoprenoidsynthesewegs verursacht, was zur erh{\"o}hten Farnesylierung von Rho1 und einer dementsprechend h{\"o}heren Konzentration von Phospho- Cofilin f{\"u}hrt. Eine Mutation in Rho1 verbessert den neurodegenerativen Ph{\"a}notyp und die Lebenserwartung von loe. Der Anstieg vom inaktiven Cofilin in loe f{\"u}hrt zu einer Zunahme von filament{\"o}sen Aktin. Aktin ist am Auswachen von Neuronen beteiligt und Experimente in denen loe Neurone analysiert wurden, gaben wertvolle Einblicke in eine m{\"o}gliche Rolle die AMPK, und dementsprechend Aktin, im Neuronenwachstum spielt. Des Weiteren wurde demonstriert, dass Neurone, die von der loe Mutante stamen, einen verlangsamten axonalen Transport aufweisen, was darauf hinweist dass Ver{\"a}nderungen, die durch den Einfluss von loe auf den Rho1 Signalweg im Zytoskelettnetzwerk hervorgerufen wurden, zur St{\"o}rung des axonalen Transports und anschließenden neuronalen Tod f{\"u}hren. Es zeigte außerdem, dass Aktin nicht nur am neuronalen Auswachsen beteiligt ist, sondern auch wichtig f{\"u}r die Aufrechterhaltung von Neuronen ist. Das bedeutet, dass {\"A}nderungen der Aktindynamik zur progressiven Degeneration von Neuronen f{\"u}hren kann. Zusammenfassend unterstreichen diese Ergebnisse die wichtige Bedeutung von AMPK in den Funktionen und im {\"U}berleben von Neuronen und er{\"o}ffnen einen neuartigen funktionellen Mechanismus in dem {\"A}nderungen in AMPK neuronale Degeneration hervorrufen kann.}, subject = {Taufliege}, language = {en} } @phdthesis{Cruz2006, author = {Cruz, Alexandre Bettencourt da}, title = {Molecular and functional characterization of the swiss-cheese and olk mutants in Drosophila melanogaster : two approaches to killing neurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17734}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {In this thesis two genes involved in causing neurodegenerative phenotypes in Drosophila are described. olk (omb-like), a futsch allele, is a micotubule associated protein (MAP) which is homologous to MAP1B and sws (swiss cheese) a serine esterase of yet unknown function within the nervous system. The lack of either one of these genes causes progressive neurodegeneration in two different ways. The sws mutant is characterized by general degeneration of the adult nervous system, glial hyperwrapping and neuronal apoptosis. Deletion of NTE (neuropathy target esterase), the SWS homolog in vertebrates, has been shown to cause a similar pattern of progressive neural degeneration in mice. NTE reacts with organophosphates causing axonal degeneration in humans. Inhibition of vertebrate NTE is insufficient to induce paralyzing axonal degeneration, a reaction called "aging reaction" is necessary for the disease to set in. It is hypothesized that a second "non-esterase" function of NTE is responsible for this phenomenon. The biological function of SWS within the nervous system is still unknown. To characterize the function of this protein several transgenic fly lines expressing different mutated forms of SWS were established. The controlled expression of altered SWS protein with the GAL4/UAS system allowed the analysis of isolated parts of the protein that were altered in the respective constructs. The characterization of a possible non-esterase function was of particular interest in these experiments. One previously described aberrant SWS construct lacking the first 80 amino acids (SWS\&\#916;1-80) showed a deleterious, dominant effect when overexpressed and was used as a model for organophosphate (OP) intoxication. This construct retains part of its detrimental effect even without catalytically active serine esterase function. This strongly suggests that there is another characteristic to SWS that is not defined solely by its serine esterase activity. Experiments analyzing the lipid contents of sws mutant, wildtype (wt) and SWS overexpressing flies gave valuable insights into a possible biological function of SWS. Phosphatidylcholine, a major component of cell membranes, accumulates in sws mutants whereas it is depleted in SWS overexpressing flies. This suggests that SWS is involved in phosphatidylcholine regulation. The produced \&\#945;-SWS antibody made it possible to study the intracellular localization of SWS. Images of double stainings with ER (endoplasmic reticulum) markers show that SWS is in great part localized to the ER. This is consistent with findings of SWS/ NTE localization in yeast and mouse cells. The olk mutant also shows progressive neurodegeneration but it is more localized to the olfactory system and mushroom bodies. Regarding specific cell types it seemed that specifically the projection neurons (PNs) are affected. A behavioral phenotype consisting of poor olfactory memory compared to wt is also observed even before histologically visible neurodegeneration sets in. Considering that the projection neurons connect the antennal lobes to the mushroom bodies, widely regarded as the "learning center", this impairment was expected. Three mutants where identified (olk1-3) by complementation analysis with the previously known futschN94 allele and sequencing of the coding sequence of olk1 revealed a nonsense mutation early in the protein. Consistent with the predicted function of Futsch as a microtubule associated protein (MAP), abnormalities are most likely due to a defective microtubule network and defects in axonal transport. In histological sections a modified cytoskeletal network is observed and western blots confirm a difference in the amount of tubulin present in the olk1 mutant versus the wt. The elaboration of neuronal axons and dendrites is dependent on a functional cytoskeleton. Observation of transport processes in primary neural cultures derived from olk1 mutant flies also showed a reduction of mitochondrial transport. Interaction with the fragile X mental retardation gene (dfmr1) was observed with the olk mutant. A dfmr1/ olk1 double mutant shows an ameliorated phenotype compared to the olk1 single mutant. tau, another MAP gene, was also shown to be able to partially rescue the olk1 mutant.}, subject = {Taufliege}, language = {en} } @phdthesis{Dusik2015, author = {Dusik, Verena}, title = {Immunhistochemische und funktionelle Charakterisierung der Mitogen-aktivierten Proteinkinase p38 in der inneren Uhr von Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124636}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Circadianes und Stress-System sind zwei physiologische Systeme, die dem Organismus helfen sich an Ver{\"a}nderungen ihrer Umwelt anzupassen. W{\"a}hrend letzteres spontane und schnelle Antworten auf akute, unvorhersehbare Umweltreize liefert, sagt das circadiane System t{\"a}glich wiederkehrende Ereignisse vorher and bereitet den Organismus so vorzeitig auf diese nahende Umweltver{\"a}nderung vor. Dennoch, trotz dieser unterschiedlichen Reaktionsmechanismen agieren beide Systeme nicht komplett autonom. Studien der vergangen Jahre belegen vielmehr eine Interaktion beider Systeme. So postulieren sie zum einem Unterschiede in der Stressantwort in Abh{\"a}ngigkeit von der Tageszeit zu der der Reiz auftritt und weisen zugleich auf eine Zunahme von gest{\"o}rten biologischen Tagesrhythmen, wie zum Beispiel Schlafst{\"o}rungen, in Folge von unkontrollierten oder exzessiven Stress hin. Ebenso liefern k{\"u}rzlich durchgef{\"u}hrte Studien an Vertebraten und Pilzen Hinweise, dass mit p38, eine Stress-aktivierte Kinase, an der Signalweiterleitung zur inneren Uhr beteiligt ist (Hayashi et al., 2003), sogar durch dieses endogene Zeitmesssystem reguliert wird (Vitalini et al., 2007; Lamb et al., 2011) und deuten damit erstmals eine m{\"o}gliche Verbindung zwischen Stress-induzierten und regul{\"a}ren rhythmischen Anpassungen des Organismus an Umweltver{\"a}nderungen an. Molekulare und zellul{\"a}re Mechanismen dieser Verkn{\"u}pfung sind bisher noch nicht bekannt. W{\"a}hrend die Rolle von p38 MAPK bei der Stress- und Immunantwort in Drosophila melanogaster gut charakterisiert ist, wurden Expression und Funktion von p38 in der inneren Uhr hingegen bislang nicht untersucht. Die hier vorliegende Arbeit hatte daher zum Ziel mittels immunhistochemischer, verhaltensphysiologischer und molekularer Methoden eine m{\"o}gliche Rolle der Stress-aktivierten Kinase im circadianen System der Fliege aufzudecken. Antik{\"o}rperf{\"a}rbungen sowie Studien mit Reporterlinien zeigen deutliche F{\"a}rbesignale in den s-LNv, l-LNv und DN1a und erbringen erstmals einen Nachweis f{\"u}r p38 Expression in den Uhrneuronen der Fliege. Ebenso scheint die Aktivit{\"a}t von p38 MAPK in den DN1a uhrgesteuert zu sein. So liegt p38 vermehrt in seiner aktiven Form in der Dunkelphase vor und zeigt, neben seiner circadian regulierten Aktivierung, zus{\"a}tzlich auch eine Inaktivierung durch Licht. 15-Minuten-Lichtpulse in der subjektiven Nacht f{\"u}hren zu einer signifikanten Reduktion von aktivierter, phosphorylierter p38 MAPK in den DN1a von Canton S Wildtypfliegen im Vergleich zu Fliegen ohne Lichtpuls-Behandlung. Aufzeichnungen der Lokomotoraktivit{\"a}t offenbaren zus{\"a}tzlich die Notwendigkeit von p38 MAPK f{\"u}r wildtypisches Timing der Abendaktivit{\"a}t sowie zum Erhalt von 24-Stunden-Verhaltensrhythmen unter konstanten Dauerdunkel-Bedindungen. So zeigen Fliegen mit reduzierten p38 Level in Uhrneuronen einen verz{\"o}gerten Beginn der Abendaktivit{\"a}t und stark verl{\"a}ngerte Freilaufperioden. In {\"U}bereinstimmung mit Effekten auf das Laufverhalten scheint dar{\"u}ber hinaus die Expression einer dominant-negativen Form von p38b in Drosophila's wichtigsten Uhrneuronen eine versp{\"a}tete nukle{\"a}re Translokation von Period zur Folge zu haben. Westernblots legen zus{\"a}tzlich einen Einfluss von p38 auf den Phosphorylierungsgrad von Period nahe und liefern damit einen m{\"o}gliche Erkl{\"a}rung f{\"u}r den versp{\"a}teten Kerneintritt des Uhrproteins. Abschließende St{\"u}tzung der Westernblotergebnisse bringen in vitro Kinasenassays und deuten auf p38 als eine potentielle „Uhrkinase" hin, welche auch in vivo Period an Serin 661 sowie weiteren potentiellen Phosphorylierungsstellen phosphorylieren k{\"o}nnte. Zusammengenommen deuten die Ergebnisse der hier vorliegenden Arbeit eindeutig auf eine bedeutende Rolle von p38, neben dessen Funkion im Stress-System, auch im circadianen System der Fliege hin und offenbaren damit die M{\"o}glichkeit, dass p38 als Schnittstelle zwischen beider Systeme fungiert.}, subject = {Taufliege}, language = {de} } @phdthesis{Eck2016, author = {Eck, Saskia}, title = {The impact of thermogenetic depolarizations of specific clock neurons on Drosophila melanogaster's circadian clock}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137118}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The rotation of the earth around its own axis determines periodically changing environmental conditions, like alterations in light and temperature. For the purpose of adapting all organisms' behavior, physiology and metabolism to recurring changes, endogenous clocks have evolved, which allow the organisms to anticipate environmental changes. In chronobiology, the scientific field dealing with the investigation of the underlying mechanisms of the endogenous clock, the fruit fly Drosophila melanogaster serves as a beneficial model organism. The fruit fly's circadian clock exhibits a rather simple anatomical organization, but nevertheless constitutes homologies to the mammalian system. Thus also in this PhD-thesis the fruit fly was used to decipher general features of the circadian clock's interneuronal communication. Drosophila melanogaster's circadian clock consists of about 150 clock neurons, which are located in the central nervous system of the fly. These clock neurons can be subdivided regarding to their anatomical position in the brain into the dorsal neurons (DN1s, DN2s, DN3s), as well as into the lateral neurons (LPNs, LNds, s-LNvs, l-LNvs). Functionally these clock neuron clusters can be classified as Morning- and Evening oscillators (M- and E- oscillators), driving different parts of the fly's locomotor activity in light-dark conditions (LD). The Morning-oscillators are represented by the s-LNvs and are known to be the main pacemakers, driving the pace of the clock in constant conditions (constant darkness; DD). The group of Evening-oscillators consists of the LNds, the DN1s and the 5th s-LNv and is important for the proper timing of the evening activity in LD. All of these clock neurons are not functionally independent, but form complex neuronal connections, which are highly plastic in their response to different environmental stimuli (Zeitgebers), like light or temperature. Even though a lot is known about the function and the importance of some clock neuron clusters, the exact interplay between the neurons is not fully known yet. To investigate the mechanisms, which are involved in communication processes among different clock neurons, we depolarized specific clock cells in a temporally and cell-type restricted manner using dTrpA1, a thermosensitive cation channel, which allows the depolarization of neurons by application of temperature pulses (TP) above 29°C to the intact and freely moving fly. Using different clock specific GAL4-driver lines and applying TPs at different time points within the circadian cycle in DD enabled us with the help of phase shift experiments to draw conclusions on the properties of the endogenous clock. The obtained phase shifts in locomotor behavior elicited by specific clock neuronal activation were plotted as phase response curves (PRCs). The depolarization of all clock neurons shifted the phase of activity the strongest, especially in the delay zone of the PRC. The exclusive depolarization of the M oscillators together with the l-LNvs (PDF+ neurons: s-LNvs \& l-LNvs) caused shifts in the delay and in the advance zone as well, however the advances were severely enhanced in their temporal occurrence ranging into the subjective day. We concluded that light might have inhibitory effects on the PDF+ cells in that particular part of the PRC, as typical light PRCs do not exhibit that kind of distinctive advances. By completely excluding light in the PRC-experiments of this PhD-thesis, this photic inhibitory input to the PDF+ neurons is missing, probably causing the broadened advance zone. These findings suggest the existence of an inhibitory light-input pathway to the PDF+ cells from the photoreceptive organs (Hofbauer-Buchner eyelet, photoreceptor cells of compound eyes, ocelli) or from other clock neurons, which might inhibit phase advances during the subjective day. To get an impression of the molecular state of the clock in the delay and advance zone, staining experiments against Period (PER), one of the most important core clock components, and against the neuropeptide Pigment Dispersing Factor (PDF) were performed. The cycling of PER levels mirrored the behavioral phase shifts in experimental flies, whereas the controls were widely unaffected. As just those neurons, which had been depolarized, exhibited immediate shifted PER oscillations, this effect has to be rapidly regulated in a cell-autonomous manner. However, the molecular link between clock neuron depolarization and shifts in the molecular clock's cycling is still missing. This issue was addressed by CREB (cAMP responsive element binding protein) quantification in the large ventrolateral neurons (l-LNvs), as these neurons responded unexpectedly and strongest to the artificial depolarization exhibiting a huge increase in PER levels. It had been previously suggested that CREB is involved in circadian rhythms by binding to regulatory sequences of the period gene (Belvin et al., 1999), thus activating its transcription. We were able to show, that CREB levels in the l-LNvs are under circadian regulation, as they exhibit higher CREB levels at the end of the subjective night relative to the end of the subjective day. That effect was further reinforced by artificial depolarization, independently of the time point of depolarization. Furthermore the data indicate that rises in CREB levels are coinciding with the time point of increases of PER levels in the l-LNvs, suggesting CREB being the molecular link between the neuronal electrical state and the molecular clock. Taking together, the results indicate that a temporal depolarization using dTrpA1 is able to significantly phase shift the clock on the behavioral and protein level. An artificial depolarization at the beginning of the subjective night caused phase delays, whereas a depolarization at the end of the subjective night resulted in advances. The activation of all clock neurons caused a PRC that roughly resembled a light-PRC. However, the depolarization of the PDF+ neurons led to a PRC exhibiting a shape that did not resemble that of a light-mediated PRC, indicating the complex processing ability of excitatory and inhibitory input by the circadian clock. Even though this experimental approach is highly artificial, just the exclusion of light-inputs enabled us to draw novel conclusions on the network communication and its light input pathways.}, subject = {Chronobiologie}, language = {en} } @phdthesis{Ehmann2015, author = {Ehmann, Nadine}, title = {Linking the active zone ultrastructure to function in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118186}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Accurate information transfer between neurons governs proper brain function. At chemical synapses, communication is mediated via neurotransmitter release from specialized presynaptic intercellular contact sites, so called active zones. Their molecular composition constitutes a precisely arranged framework that sets the stage for synaptic communication. Active zones contain a variety of proteins that deliver the speed, accuracy and plasticity inherent to neurotransmission. Though, how the molecular arrangement of these proteins influences active zone output is still ambiguous. Elucidating the nanoscopic organization of AZs has been hindered by the diffraction-limited resolution of conventional light microscopy, which is insufficient to resolve the active zone architecture on the nanometer scale. Recently, super-resolution techniques entered the field of neuroscience, which yield the capacity to bridge the gap in resolution between light and electron microscopy without losing molecular specificity. Here, localization microscopy methods are of special interest, as they can potentially deliver quantitative information about molecular distributions, even giving absolute numbers of proteins present within cellular nanodomains. This thesis puts forward an approach based on conventional immunohistochemistry to quantify endogenous protein organizations in situ by employing direct stochastic optical reconstruction microscopy (dSTORM). Focussing on Bruchpilot (Brp) as a major component of Drosophila active zones, the results show that the cytomatrix at the active zone is composed of units, which comprise on average ~137 Brp molecules, most of which are arranged in approximately 15 heptameric clusters. To test for a quantitative relationship between active zone ultrastructure and synaptic output, Drosophila mutants and electrophysiology were employed. The findings indicate that the precise spatial arrangement of Brp reflects properties of short-term plasticity and distinguishes distinct mechanistic causes of synaptic depression. Moreover, functional diversification could be connected to a heretofore unrecognized ultrastructural gradient along a Drosophila motor neuron.}, subject = {Taufliege}, language = {en} } @phdthesis{EngelhardtgebChristiansen2013, author = {Engelhardt [geb. Christiansen], Frauke}, title = {Synaptic Connectivity in the Mushroom Body Calyx of Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85058}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Learning and memory is considered to require synaptic plasticity at presynaptic specializations of neurons. Kenyon cells are the intrinsic neurons of the primary olfactory learning center in the brain of arthropods - the mushroom body neuropils. An olfactory mushroom body memory trace is supposed to be located at the presynapses of Kenyon cells. In the calyx, a sub-compartment of the mushroom bodies, Kenyon cell dendrites receive olfactory input provided via projection neurons. Their output synapses, however, were thought to reside exclusively along their axonal projections outside the calyx, in the mushroom body lobes. By means of high-resolution imaging and with novel transgenic tools, we showed that the calyx of the fruit fly Drosophila melanogaster also comprised Kenyon cell presynapses. At these presynapses, synaptic vesicles were present, which were capable of neurotransmitter release upon stimulation. In addition, the newly identified Kenyon cell presynapses shared similarities with most other presynapses: their active zones, the sites of vesicle fusion, contained the proteins Bruchpilot and Syd-1. These proteins are part of the cytomatrix at the active zone, a scaffold controlling synaptic vesicle endo- and exocytosis. Kenyon cell presynapses were present in γ- and α/β-type KCs but not in α/β-type Kenyon cells. The newly identified Kenyon cell derived presynapses in the calyx are candidate sites for an olfactory associative memory trace. We hypothesize that, as in mammals, recurrent neuronal activity might operate for memory retrieval in the fly olfactory system. Moreover, we present evidence for structural synaptic plasticity in the mushroom body calyx. This is the first demonstration of synaptic plasticity in the central nervous system of Drosophila melanogaster. The volume of the mushroom body calyx can change according to changes in the environment. Also size and numbers of microglomeruli - sub-structures of the calyx, at which projection neurons contact Kenyon cells - can change. We investigated the synapses within the microglomeruli in detail by using new transgenic tools for visualizing presynaptic active zones and postsynaptic densities. Here, we could show, by disruption of the projection neuron - Kenyon cell circuit, that synapses of microglomeruli were subject to activity-dependent synaptic plasticity. Projection neurons that could not generate action potentials compensated their functional limitation by increasing the number of active zones per microglomerulus. Moreover, they built more and enlarged microglomeruli. Our data provide clear evidence for an activity-induced, structural synaptic plasticity as well as for the activity-induced reorganization of the olfactory circuitry in the mushroom body calyx.}, subject = {Taufliege}, language = {en} } @phdthesis{Ernst1999, author = {Ernst, Roman}, title = {Visuelle Mustererkennung und Parameterextraktion bei Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1156}, school = {Universit{\"a}t W{\"u}rzburg}, year = {1999}, abstract = {In operanten Konditionierungsexperimenten im Flugsimulator werden vier Parameter gefunden die Drosophila melanogaster aus visuellen Mustern extrahieren kann: Musterfl{\"a}che, vertikale Position des Musterschwerpunkts, Verteiltheit und Musterausrichtung in horizontaler und vertikaler Richtung. Es ist nicht auszuschliessen, dass die Fliege weitere Musterparameter extrahieren kann. Spontane Musterpr{\"a}ferenzen und konditionierte Pr{\"a}ferenzen zeigen unterschiedliche Zusammenh{\"a}nge mit den Musterparametern. Aus r{\"a}umlich getrennten Musterelementen zusammengesetzte Muster werden von der Fliege wie ein Gesamtmuster behandelt. Retinaler Transfer wird auch bei der Pr{\"a}sentation von Mustern an zwei verschiedenen vertikalen Trainingspositionen nicht beobachtet. Muster werden generalisiert, wenn die Schwerpunkte korrespondierender Muster zwischen Training und Test ungef{\"a}hr an der gleichen Position liegen aber keine retinale {\"U}berlappung von Trainings- und Testmustern besteht. Retinotopie des Musterged{\"a}chtnisses liegt in diesem Fall nicht auf der Ebene der Bildpunkte, jedoch m{\"o}glicherweise auf der Ebene des Parameters 'Musterschwerpunkt' vor. Fliegen k{\"o}nnen nicht trainiert werden bestimmte Musterpaare zu diskriminieren die sich nur durch die vertikale Position ihres Musterschwerpunktes unterscheiden. Dennoch bevorzugen sie beim Lerntest mit anderen Mustern mit korrespondierenden Schwerpunktspositionen die zuvor nicht bestrafte Schwerpunktsposition. F{\"u}r die Modellierung der Extraktion von Musterschwerpunkt und Musterfl{\"a}che wird ein einfaches k{\"u}nstliches neuronales Filter pr{\"a}sentiert, dessen Architektur auf einem Berechnungsalgorithmus f{\"u}r den gemeinsamen Schwerpunkt mehrerer Teilelemente beruht.}, subject = {Taufliege}, language = {de} } @phdthesis{Eschbach2011, author = {Eschbach, Claire}, title = {Classical and operant learning in the larvae of Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70583}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {In dieser Doktorarbeit studiere ich einige psychologische Aspekte im Verhalten der Drosophila, insbesondere von Drosophila Larven. Nach einer Einleitung, in der ich den wissenschaftlichen Kontext darstelle und die Mechanismen der olfaktorischen Wahrnehmung sowie des klassichen und operanten Lernens beschreibe, stelle ich die verschiedenen Experimente meiner Doktorarbeit vor. Wahrnehmung Das zweite Kapitel behandelt die Art, in der adulte Drosophila zwischen Einzeld{\"u}ften und Duftgemischen generaliseren. Ich habe gefunden, daß die Fliegen eine Mischung aus zwei D{\"u}ften als gleich verschieden von ihren beiden Elementen wahrnehmen; und daß die Intensit{\"a}t sowie die chemisch-physikalische Natur der Elemente das Ausmass der Generalisierung zwischen der Mischung und ihren beiden Elementen beeinflusst. Diese Entdeckungen sollten f{\"u}r die weitere Forschung anregend sein, wie zum Beispiel zum functional imaging. Ged{\"a}chtnis Das dritte Kapitel stellt die Etablierung eines neuen Protokolls zur klassischen Konditionierung bei Drosophila Larven dar. Es handelt sich um Experimente, bei denen ein Duft mit einer mechanischen St{\"o}rung als Strafreiz verkn{\"u}pft wird. Das Protokoll wird einen Vergleich zwischen zwei Arten vom aversiven Ged{\"a}chtnissen (Geschmack vs. mechanische St{\"o}rung als Strafreize) erm{\"o}glichen, einschliesslich eines Vergleiches ihrer neurogenetischen Grundlagen; zudem kann nun geforscht werden, ob die jeweiligen Ged{\"a}chtnisse spezifisch f{\"u}r die Art des verwendeten Strafreizes sind. Selbstgestaltung Das vierte Kapitel umfasst unsere Versuche, operantes Ged{\"a}chtnis bei Drosophila Larven zu beobachten. Zumindest f{\"u}r die unmittelbar ersten Momente des Tests konnte ich zeigen, dass die Larven ihr Verhalten entsprechend dem Training ausrichten. Dieses Ged{\"a}chtnis scheint jedoch im Laufe des Tests schnell zu verschwinden. Es ist daher geraten, diese Ergebnisse {\"u}ber operantes Lernen zu wiederholen, eventuell das experimentelle Protokoll zu verbessern, um so eine systematische Analyse der Bedingungen und Mechanismen f{\"u}r das operante Lernen bei der Drosophila Larve zu erlauben. Im f{\"u}nften Kapitel verwende ich die im Rahmen des vierten Kapitels entwickelten Methoden f{\"u}r eine Analyse der Fortbewegung der Larven. Ich habe insbesondere die Wirkung des pflanzlichen ‚cognitive enhancers' Rhodiola rosea untersucht, sowie die Auswirkungen von Mutationen in den Genen, welche f{\"u}r Synapsin und SAP47 kodieren; schliesslich habe ich getestet, ob die Geschmacksqualit{\"a}t der Testsituation lokomotorische Parameter ver{\"a}ndert. Diese Dissertation erbringt also eine Reihe neuer Aspekte zur Psychologie der Drosophila und wird hoffentlich in diesem Bereich der Forschung neue Wege {\"o}ffnen.}, subject = {Lernen}, language = {en} } @phdthesis{Fischer2015, author = {Fischer, Robin}, title = {Generating useful tools for future studies in the center of the circadian clock - defined knockout mutants for PERIOD and TIMELESS}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119141}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {To unravel the role of single genes underlying certain biological processes, scientists often use amorphic or hypomorphic alleles. In the past, such mutants were often created by chance. Enormous approaches with many animals and massive screening effort for striking phenotypes were necessary to find a needle in the haystack. Therefore at the beginning chemical mutagens or radiation were used to induce mutations in the genome. Later P-element insertions and inaccurate jump-outs enabled the advantage of potential larger deletions or inversions. The mutations were characterized and subsequently kept in smaller populations in the laboratories. Thus additional mutations with unknown background effects could accumulate. The precision of the knockout through homologous recombination and the additional advantage of being able to generate many useful rescue constructs that can be easily reintegrated into the target locus made us trying an ends-out targeting procedure of the two core clock genes period and timeless in Drosophila melanogaster. Instead of the endogenous region, a small fragment of approximately 100 base pairs remains including an attP-site that can be used as integration site for in vitro created rescue constructs. After a successful ends-out targeting procedure, the locus will be restored with e.g. flies expressing the endogenous gene under the native promoter at the original locus coupled to a fluorescence tag or expressing luciferase. We also linked this project to other research interests of our work group, like the epigenetic related ADAR-editing project of the Timeless protein, a promising newly discovered feature of time point specific timeless mRNA modification after transcription with yet unexplored consequences. The editing position within the Timeless protein is likewise interesting and not only noticed for the first time. This will render new insights into the otherwise not-satisfying investigation and quest for functional important sequences of the Timeless protein, which anyway shows less homology to other yet characterized proteins. Last but not least, we bothered with the question of the role of Shaggy on the circadian clock. The impact of an overexpression or downregulation of Shaggy on the pace of the clock is obvious and often described. The influence of Shaggy on Period and Timeless was also shown, but for the latter it is still controversially discussed. Some are talking of a Cryptochrome stabilization effect and rhythmic animals in constant light due to Shaggy overexpression, others show a decrease of Cryptochrome levels under these conditions. Also the constant light rhythmicity of the flies, as it was published, could not be repeated so far. We were able to expose the conditions behind the Cryptochrome stabilization and discuss possibilities for the phenomenon of rhythmicity under constant light due to Shaggy overexpression.}, subject = {Biologische Uhr}, language = {en} } @phdthesis{Franz2009, author = {Franz, Mirjam}, title = {Analyse der Hangover Funktion w{\"a}hrend der Entwicklung von Ethanol-induziertem Verhalten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-35591}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Die Entwicklung von Ethanoltoleranz ist ein Indikator f{\"u}r eine m{\"o}gliche Abh{\"a}ngigkeit von Alkohol. Der genaue molekulare Mechanismus der Ethanoltoleranzentwicklung ist jedoch nicht bekannt. Drosophila erm{\"o}glicht die molekulare und ph{\"a}notypische Untersuchung von verschiedenen Mutanten mit ver{\"a}nderter Toleranz und kann so zu einem besseren Verst{\"a}ndnis beitragen. Die hangAE10 Mutante entwickelt eine reduzierte Ethanoltoleranz, wobei dieser Ph{\"a}notyp auf Defekte in der zellul{\"a}ren Stressantwort zur{\"u}ckzuf{\"u}hren ist. F{\"u}r ein besseres Verst{\"a}ndnis, in welchen molekularen Mechanismen bzw. Signalwegen HANG wirkt, wurde die Funktion des Proteins auf zellul{\"a}rer Ebene analysiert und m{\"o}gliche Zielgene charakterisiert. Die auff{\"a}llige Proteinstruktur von HANG spricht f{\"u}r eine Interaktion mit Nukleins{\"a}uren. Immunhistochemische Analysen von ektopisch exprimiertem Hangover Protein ergaben, dass dieses nicht mit der DNA co-lokalisiert und auch nicht an polyt{\"a}nen Chromosomen nachgewiesen werden kann. Die ektopische Expression von HANG in Speicheldr{\"u}senzellen zeigte eine punktf{\"o}rmige Verteilung des Proteins innerhalb des Zellkerns. Dieses punktf{\"o}rmige Expressionsmuster wird h{\"a}ufig in RNA-bindenden Proteinen gefunden. Deshalb wurden Co-Lokalisationsstudien von HANG mit Markern f{\"u}r RNAmodifizierende Proteine durchgef{\"u}hrt. Dabei wurde keine Interaktion mit verschiedenen Markerproteinen des Spleißapparates gefunden. Mithilfe von in vitro Experimenten konnte aber die Bindung von RNA an bestimmten Hangover Proteinbereichen nachgewiesen werden Diese Ergebnisse legen nahe, dass HANG eine RNA-regulierende Funktion hat. In einem cDNA Microarray Experiment wurde das Gen dunce als m{\"o}gliches Zielgen von Hangover identifiziert. Das Gen dunce kodiert f{\"u}r eine Phosphodiesterase, welche spezifisch cAMP hydrolysiert. Zur Best{\"a}tigung der cDNA Microarray Experimente wurden die dnc Transkriptunterschiede in Wildtyp und hangAE10 Mutante mithilfe von semiquantitativer RT-PCR f{\"u}r jede der vier Gruppen untersucht. Dabei konnte eine Reduktion der dncRMRA-Transkriptgruppe in hangAE10 Mutanten nachgewiesen werden. Aufgrund dieser Ergebnisse wurde die dncRMRA -spezifische dnc\&\#916;143 Mutante hergestellt und auf Verhaltensebene analysiert. Die Experimente zeigten, dass sowohl dnc1, als auch die dnc\&\#916;143 Mutante eine reduzierte Ethanoltoleranz und Defekte in der zellul{\"a}ren Stressantwort aufweisen. F{\"u}r die Rettung der reduzierten Toleranz von hangAE10 und dnc\&\#916;143 in dncRMRA-spezifischen Neuronen wurde die dncRMRA Promotor- GAL4 Linie hergestellt. Die reduzierte Ethanoltoleranz der dnc\&\#916;143 Mutanten konnte {\"u}ber die Expression von UAS-dnc mit der dncRMRA-GAL4 Linie auf Wildtyp Level gerettet werden. Die reduzierte Toleranz der hangAE10 Mutante konnte mithilfe derselben GAL4 Linie verbessert werden. Dies beweist, dass in beiden Mutanten dieselben Zellen f{\"u}r die Entwicklung von Ethanoltoleranz ben{\"o}tigt werden und sie wahrscheinlich in der gleichen Signaltransduktionskaskade eine Funktion haben. Aufgrund der Anf{\"a}lligkeit der UAS/ GAL4 Systems gegen{\"u}ber Hitze war es außerdem nicht m{\"o}glich die Defekte der zellul{\"a}ren Stressantwort von dnc\&\#916;143 bzw. hangAE10 Fliegen zu retten. Die Rettung der reduzierten Ethanoltoleranz der dcn\&\#916;143 Mutante f{\"u}hrte außerdem zu der Vermutung, dass die cAMP Regulation eine wichtige Funktion bei der Ethanoltoleranzentwicklung hat. {\"U}ber die Expression von cAMP-regulierenden Proteinen in dncRMRA-spezifischen Neuronen wurde der Einfluss von cAMP bei Ethanol-induziertem Verhalten {\"u}berpr{\"u}ft. Bei der {\"U}berexpression von dunce und rutabaga konnte weder eine Ver{\"a}nderung f{\"u}r die Ethanolsensitivit{\"a}t, noch f{\"u}r die Toleranzentwicklung festgestellt werden. Eine Erkl{\"a}rung hierf{\"u}r w{\"a}re, dass Ver{\"a}nderungen in der cAMP Konzentration {\"u}ber R{\"u}ckkopplungsmechanismen zwischen Dunce und Rutabaga ausgeglichen werden k{\"o}nnen. F{\"u}r eine genauere Aussage m{\"u}sste jedoch die cAMP Konzentration in diesen Fliegen gemessen werden. Die {\"U}berexpression von pka- in dncRMRA spezifischen Zellen f{\"u}hrt zu einer erh{\"o}hten Ethanolresistenz. Das bedeutet, dass die Modulation der cAMP Konzentration durch dunce und rutabaga in dncRMRA spezifischen Zellen keinen Einfluss auf Ethanol-induziertes Verhalten hat, wohingegen die St{\"a}rke der cAMP vermittelten Signalverarbeitung {\"u}ber die cAMP-abh{\"a}ngige PKA zu Ver{\"a}nderungen im Verhalten f{\"u}hrt. F{\"u}r Mutanten des cAMP Signalweges ist außerdem bekannt, dass sie Defekte im olfaktorischen Lernen bzw. Ged{\"a}chtnis aufweisen. Deshalb wurden die dnc\&\#916;143, dnc1 und hangAE10 Mutanten in diesem Paradigma getestet. Sowohl dnc1, als auch dnc\&\#916;143 Fliegen zeigten einen reduzierten Performance Index f{\"u}r das zwei und 30 Minuten Ged{\"a}chtnis. Nach 180 Minuten verhielten sich die dnc\&\#916;143 Mutanten nicht mehr unterschiedlich zum Wildtyp, die dnc1 Mutante zeigte jedoch immer noch eine Reduktion des Performance Index im Vergleich zur Kontrolle. Demnach ist in dnc\&\#916;143 Mutanten nur das Kurzzeitged{\"a}chtnis betroffen, wohingegen hangAE10 Mutanten keine Reduktion des Performance Index f{\"u}r das olfaktorische Kurzzeitged{\"a}chtnis aufweisen. Die unterschiedlichen Ergebnisse der beiden Mutanten in der Ged{\"a}chtnisentwicklung deuten außerdem daraufhin, dass Lernen und Ged{\"a}chtnis in dnc\&\#916;143 und hangAE10 Mutanten von der Toleranzentwicklung unabh{\"a}ngig {\"u}ber unterschiedliche cAMP-abh{\"a}ngige Signaltransduktionskaskaden reguliert werden.}, subject = {Taufliege}, language = {de} } @phdthesis{Funk2003, author = {Funk, Natalja}, title = {Das Sap47-Gen aus Drosophila melanogaster : Gezielte Mutagenisierung und Suche nach Interaktionspartnern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7667}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {SAP47 ist ein Synapsenassoziiertes Protein von 47 kDa aus Drosophila melanogaster, das zu einer neuen Proteinfamilie geh{\"o}rt. Um eine Sap47 Mutante zu erzeugen wurden drei Methoden eingesetzt: Gezielte Mutagenese durch homologe Rekombination, RNA interference (RNAi) und Transposon Remobilisierung. Um einen Interaktionspartner f{\"u}r das SAP47 Protein zu identifizieren wurden ein Yeast-Two-Hybrid System und das "CytoTrap" Verfahren eingesetzt.}, subject = {Taufliege}, language = {de} } @phdthesis{Gehring2017, author = {Gehring, Jennifer}, title = {Functional analysis of the latrophilin homolog dCirl in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101061}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Latrophilin, alternatively named calcium-independent receptor of α-latrotoxin (CIRL), resembles a prototype of the adhesion class G-protein coupled receptors (GPCRs). Initially identified as a high-affinity receptor for α-latrotoxin, a component of the black widow spider, latrophilins are now associated with various distinct functions, such as synaptic exocytosis, tissue polarity and fertility (Tobaben et al., 2002; Langenhan et al., 2009; Promel et al., 2012). Despite these exploratory efforts the precise subcellular localisation as well as the endogenous ligand of CIRL still remains elusive. In this work genetic experiments, imaging approaches and behavioural studies have been used to unravel the localisation and physiological function of the latrophilin homolog dCirl in Drosophila melanogaster. Containing only one latrophilin homolog together with its genetic accessibility and well-established transgenic approaches, Drosophila seemed an ideally suited model organism. The present study showed that dCirl is widely expressed in the larval central nervous system including moto- and sensory neurons. Further, this work revealed that removal of the latrophilin homolog does not greatly affect synaptic transmission but it seems that aspects of the postsynaptic structural layout are controlled by dCIRL in the fruit fly. Additionally, dCirl expression at the transcriptional level was confirmed in larval and adult chordotonal organs, specialised mechanosensors implicated in proprioception (Eberl, 1999). Expression of dCIRL at the protein level could not yet been confirmed in moto- and sensory neurons likely due to low endogenous expression. However, behavioural studies using dCirl knockout mutant larvae indicated a putative mechanosensory function of dCIRL regarding touch sensitivity and locomotion behaviour. The second part of this thesis presents a strategy to examine interactions between several presynaptic proteins in living cells. The attempt described in this work is based on the discovery that GFP when split into two non-fluorescent fragments can form a fluorescent complex. The association of the fragments can be facilitated by fusing them to two proteins that interact with each other. Therefore, the split GFP method enables direct visualization of synaptic protein interactions in living cells. In initial experiments I could show that full length reporter protein fusions with n-Synaptobrevin (n-Syb), Synaptotagmin (Syt) and Syntaxin (Syx) allow expression in Drosophila and confirmed that fusion to either end of each synaptic protein did not impair expression or influence the viability of transgenic flies. Further, transgenes containing protein fusions of Syx, Syt, and n-Syb with split GFP fragments were established in previous studies (Gehring, 2010). The present work characterises the interaction of these protein fusions during different stages of synaptic vesicle turnover at active zones such as synaptic vesicle docking at the presynaptic membrane and vesicle fusion. These results suggest that the spGFP assay seems only partly suitable for resolving fast and transient protein-protein interactions at larval Drosophila active zones in vivo.}, subject = {Taufliege}, language = {en} } @phdthesis{Gerlach2018, author = {Gerlach, Jennifer}, title = {Influence of Myc-interacting proteins on transcription and development}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154917}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The transcription factor Myc interacts with several co-factors to regulate growth and proliferationand thereby enables normal animal development. Deregulation of Myc is associated witha wide range of human tumors. Myc binds to DNA together with its dimerization partner Max, preferentially to canonical E-box motifs, but this sequence-specific interaction is probably not sufficient for Myc's binding to target genes. In this work, the PAF1 complex was characterized as a novel co-factor of Myc in Drosophila melanogaster. All components of the complex are required for Myc's recruitment to chromatin, but the subunit Atu has the strongest effect on Myc's binding to target genes through ist direct physical interaction with Myc. Unexpectedly, the impact of Atu depletion on the Expression of Myc target genes was weak compared to its effect on Myc binding. However, the influence of Atu becomes more prominent in situations of elevated Myc levels in vivo . Mycrepressed as well as Myc-activated targets are affected, consistent with the notion that Myc recruitment is impaired. An independent set of analyses revealed that Myc retains substantial activity even in the complete absence of Max. The overexpression of Myc in Max0 mutants specifically blocks their pupariation without affecting their survival, which raised the possibility that Myc might affect ecdysone biosynthesis. This connection was studied in the second part of this Thesis which showed that Myc inhibits the expression of ecdysteroidogenic genes and thereby the production of ecdysone. Myc most likely affects the signaling pathways (PTTH and insulin signaling) upstream of the PG, the organ where ecdysone is produced. By combining existing ChIPseq, RNAseq and electronic annotation data, we identified five potential Maxindependent Myc targets and provided experimental data that they might be involved in Myc's effect on Max mutant animals. Together our data confirm that some Myc functions are Max-independent and they raise the possibility that this effect might play a role during replication.}, subject = {Taufliege}, language = {en} } @phdthesis{Gmeiner2014, author = {Gmeiner, Florian}, title = {Der Einfluss der Neurotransmitter Dopamin, Serotonin und GABA sowie ihrer Transporter auf das Schlafverhalten von Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-99152}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In der vorliegenden Arbeit wurde der Einfluss von Dopamin, Serotonin und GABA auf das Schlafverhalten von Drosophila melanogaster genauer untersucht. Mit Hilfe von Mutanten in Wiederaufnahmetransportern f{\"u}r Dopamin und Serotonin konnte gezeigt werden, dass Dopamin und Serotonin entgegengesetzte Wirkungen auf die Schlafmenge der Fliegen haben. Dopamin hat eine schlafhemmende, Serotonin eine schlaff{\"o}rdernde Wirkung. Die Nutzung eines neuronal dopamindefizienten Fliegenstammes erweitert diese Erkenntnisse. Die Nutzung von RNAi zur Hinunterregulierung der Rezeptoren f{\"u}r Dopamin brachte keine weiteren Erkenntnisse, da sie zu keinem messbaren Effekt f{\"u}hren. Jedoch ergab eine parallel dazu durchgef{\"u}hrte Hinunterregulierung des GABABR2 Rezeptors, dass dieser maßgeblich f{\"u}r die Aufrechterhaltung des Schlafes in der zweiten H{\"a}lfte der Nacht verantwortlich ist. Es konnte gezeigt werden, dass f{\"u}r diese Aufgabe vor allem ihre Expression in den l-LNv Neuronen relevant ist. Dabei ist f{\"u}r die GABABR2 Rezeptoren kein Effekt, f{\"u}r Dopamin und Serotonin nur in geringen Ausmaß ein Effekt auf die Innere Uhr in Form von gering ver{\"a}nderter Periode zu beobachten. Durch eine Kombination der Transportermutanten f{\"u}r Dopamin und Serotonin mit dem intakten, als auch mutierten WHITE Transporter zeigte sich eine interessante Interaktion dieser drei Transporter bei der Regulation der Gesamtschlafmenge, wobei die white Mutation zu einer Reduzierung der Gesamtschlafmenge f{\"u}hrt. UPLC Messungen der St{\"a}mme ergaben, dass der Effekt von white vermutlich auf dessen Einfluss auf den beta-Alanyldopamingehalt der Fliegen basiert. beta-Alanyldopamin wird bei dem Transport von Dopamin {\"u}ber die Gliazellen durch das Enzym EBONY gebildet, dessen Mutation in der Kombination mit intaktem WHITE und mutiertem Dopamintransporter zu einer drastischen Reduktion des Schlafes w{\"a}hrend der Nacht f{\"u}hrt. Im Rahmen der Untersuchung konnte zudem gezeigt werden, dass entgegen des bisherigen Wissens aus Zellkulturstudien in Drosophila melanogaster kein beta-Alanylserotonin gebildet wird. M{\"o}glicherweise wird nur Dopamin, nicht jedoch Serotonin {\"u}ber die Gliazellen recycelt. Dies ist ein interessanter Unterschied, der sowohl eine zeitliche, als auch lokale Feinregulation der Gegenspieler Dopamin und Serotonin erm{\"o}glicht. Die Untersuchung der Dimerpartner BROWN und SCARLET zeigte, dass lediglich BROWN zu einer Reduktion des Schlafes f{\"u}hrt. Ein Effekt, der auch in einer Fliegenlinie mit spontaner white Mutation beobachtet werden konnte. Die genaue Funktion dieses Heterodimertransporters und seine neuronale Lokalisation wurden im Rahmen dieser Arbeit noch nicht gekl{\"a}rt. Dennoch liegt eine Funktion als Dopamin- oder beta-Alanyldopamintransporter in Gliazellen auf Grund der ermittelten Ergebnisse nahe. Zus{\"a}tzlich konnte zum ersten Mal in Drosophila melanogaster eine Funktion der Amintransporter bei der Anpassung der Inneren Uhr an extreme kurze bzw. lange Photoperioden gezeigt werden. Eine anatomische Lokalisierung des WHITE Transporters im Gehirn von Drosophila melanogaster, die weitere Charakterisierung der Rolle des WHITE/BROWN Dimers und die Zuordnung bestimmter dopaminerger und serotonerger Neurone bei der Modulation der Aktivit{\"a}tsmaxima stellen spannende Fragen f{\"u}r zuk{\"u}nftige Arbeiten dar.}, subject = {Taufliege}, language = {de} } @phdthesis{Grebler2015, author = {Grebler, Rudi}, title = {Untersuchung der Rolle von Rhodopsin 7 und Cryptochrom im Sehprozess von Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114466}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Ausgangspunkt f{\"u}r die Detektion von Licht ist im gesamten Tierreich die Absorption von Photonen durch photorezeptive Proteine, die sogenannten Opsine und in geringerem Ausmaß die Typ 1 Cryptochrome. Die Taufliege Drosophila melanogaster besitzt sechs eingehend charakterisierte, auch als Rhodopsine bezeichnete Opsine (Rh1-Rh6) und ein Cryptochrom (CRY). Neben den Ocellen und den Hofbauer-Buchner {\"A}uglein werden die Rhodopsine in erster Linie in den Photorezeptorzellen der Komplexaugen, den Hauptorganen der Lichtperzeption exprimiert, wo sie der Vermittlung der visuellen Wahrnehmung dienen. Basierend auf Sequenzvergleichen wurde im Jahr 2000 ein neues Protein namens Rh7 zur Gruppe der Drosophila Opsine hinzugef{\"u}gt. Bis heute fehlt allerdings jeglicher experimentelle Beleg f{\"u}r die photorezeptive Funktion dieses Proteins. Im Gegensatz dazu wird Cryptochrom in erster Linie in einigen Uhrneuronen des Drosophila Gehirns exprimiert, wo es diesen Neuronen die F{\"a}higkeit zur Lichtdetektion verleiht und das Photoentrainment der inneren Uhr lenkt. Neueren Untersuchungen zu folge spielt CRY allerdings auch bei der visuellen Wahrnehmung der Augen eine Rolle. Die vorliegende Arbeit zielte nun darauf ab die potentielle Funktion von Rh7 als neuen Photorezeptor in Drosophila sowie die Rolle von CRY bei der visuellen Lichtperzeption zu untersuchen. Die Aufnahmen der Elektroretinogramme (ERGs) von transgenen Fliegen, die Rh7 anstelle von oder zusammen mit dem dominanten Photorezeptor Rh1 in den Komplexaugen exprimieren, zeigen, dass Rh7 die Phototransduktionskaskade bei Belichtung mit Weißlicht nicht aktivieren kann. Die Abwesenheit von Rh7 sorgt allerdings trotzdem f{\"u}r eine Beeintr{\"a}chtigung der lichtinduzierten Antwort der Rezeptorzellen im Komplexauge. So zeigen die Intensit{\"a}ts-Response Kurven der ERG Rezeptorpotentialamplitude von rh7 Knockout-Fliegen unter Weißlicht niedriger und mittlerer Intensit{\"a}t nach einer anf{\"a}nglichen Dunkeladaptation von 15min eine insgesamt, im Vergleich zur Kontrolle erh{\"o}hte Rezeptorpotentialamplitude. Der Verlauf dieser Kurven deutet außerdem darauf hin, dass die Zunahme der Rezeptorpotentialamplitude mit steigender Lichtintensit{\"a}t gr{\"o}ßer wird. Zudem zeigt das Aktionsspektrum f{\"u}r die Rezeptorpotentialamplitude der rh7 Knockout-Fliegen, dass diese Empfindlichkeitszunahme im gesamten Bereich von 370-648nm auftritt. Diese Beeintr{\"a}chtigung scheint jedoch zu fehlen, wenn die Fliegen vor Experimentbeginn nur 1min dunkeladaptiert wurden, oder wenn intensives Blaulicht zur Belichtung verwendet wird. Des weiteren ist auch das 4s nach Ende des Lichtpulses im ERG gemessene Nachpotential bei fehlendem Rh7 reduziert. Zusammengenommen deuten diese Ergebnisse darauf hin, dass Rh7, wenn auch nicht als Photorezeptor, bei Belichtung mit Weißlicht niedriger und mittlerer Intensit{\"a}t die Lichtantwort in den Rezeptorzellen des Komplexauges in Abh{\"a}ngigkeit von Intensit{\"a}t und Adaptationszustand beeinflusst und dass dieser Einfluss scheinbar nicht durch Licht eines eng begrenzten Wellenl{\"a}ngenbereichs induziert wird. Des weiteren legt die Untersuchung des ERG Nachpotentials nahe, dass Rh7 m{\"o}glicherweise f{\"u}r eine normale Beendigung der Lichtantwort ben{\"o}tigt wird. Die allgemeine Funktion von Rh7 als Photorezeptor in Drosophila sowie die Eigenschaften der endogenen Funktion von Rh7 werden diskutiert. Unabh{\"a}ngig davon wird in der vorliegenden Arbeit auch gezeigt, dass Fliegen ohne CRY zwar nach 15-min{\"u}tiger, nicht jedoch nach 1-min{\"u}tiger Dunkeladaptation bei Belichtung mit Weißlicht niedriger Intensit{\"a}t eine insgesamt geringere ERG Rezeptorpotentialamplitude aufweisen. Dies k{\"o}nnte auf eine Beeintr{\"a}chtigung der Dunkeladaptationsprozesse bei Abwesenheit von CRY hindeuten.}, subject = {Taufliege}, language = {de} } @phdthesis{Grotemeyer2019, author = {Grotemeyer, Alexander}, title = {Characterisation and application of new optogenetic tools in \(Drosophila\) \(melanogaster\)}, doi = {10.25972/OPUS-17879}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178793}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Since Channelrhodopsins has been described first and introduced successfully in freely moving animals (Nagel et al., 2003 and 2005), tremendous impact has been made in this interesting field of neuroscience. Subsequently, many different optogenetic tools have been described and used to address long-lasting scientific issues. Furthermore, beside the 'classical' Channelrhodopsin-2 (ChR2), basically a cation-selective ion channel, also altered ChR2 descendants, anion selective channels and light-sensitive metabotropic proteins have expanded the optogenetic toolbox. However, in spite of this variety of different tools most researches still pick Channelrhodopsin-2 for their optogenetic approaches due to its well-known kinetics. In this thesis, an improved Channelrhodopsin, Channelrhodopsin2-XXM (ChR2XXM), is described, which might become an useful tool to provide ambitious neuroscientific approaches by dint of its characteristics. Here, ChR2XXM was chosen to investigate the functional consequences of Drosophila larvae lacking latrophilin in their chordotonal organs. Finally, the functionality of GtACR, was checked at the Drosophila NMJ. For a in-depth characterisation, electrophysiology along with behavioural setups was employed. In detail, ChR2XXM was found to have a better cellular expression pattern, high spatiotemporal precision, substantial increased light sensitivity and improved affinity to its chromophore retinal, as compared to ChR2. Employing ChR2XXM, effects of latrophilin (dCIRL) on signal transmission in the chordotonal organ could be clarified with a minimum of side effects, e.g. possible heat response of the chordotonal organ, due to high light sensitivity. Moreover, optogenetic activation of the chordotonal organ, in vivo, led to behavioural changes. Additionally, GtACR1 was found to be effective to inhibit motoneuronal excitation but is accompanied by unexpected side effects. These results demonstrate that further improvement and research of optogenetic tools is highly valuable and required to enable researchers to choose the best fitting optogenetic tool to address their scientific questions.}, subject = {Optogenetik}, language = {en} } @phdthesis{Gruber2010, author = {Gruber, Franz Andreas}, title = {Untersuchung zur Regulation der Expression des zuckerkonditionierten Verhaltens bei Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48802}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In dieser Doktorarbeit habe ich die Regulation der Expression des zuckerbelohnten Verhaltens durch den F{\"u}tterungszustand bei Drosophila melanogaster untersucht. Die Fliegen k{\"o}nnen w{\"a}hrend einer Trainingsphase mit Hilfe einer Zuckerbelohnung auf einen bestimmten Duft konditioniert werden. Nach dem Training k{\"o}nnen die Fliegen dann auf das olfaktorische Ged{\"a}chtnis getestet werden. Die Bereitschaft das zuckerkonditionierte Ged{\"a}chtnis im Test zu zeigen wird vom F{\"u}tterungszustand kontrolliert, wie ich in {\"U}bereinstimmung mit den Ergebnissen fr{\"u}herer Arbeiten demonstrierte (Tempel et al. 1983; Gruber 2006; Krashes et al. 2008). Nur nicht gef{\"u}tterte Fliegen exprimieren das Ged{\"a}chtnis, w{\"a}hrend F{\"u}tterungen bis kurz vor dem Test eine reversibel supprimierende Wirkung haben. Einen {\"a}hnlichen regulatorischen Einfluss {\"u}bt der Futterentzug auch auf die Expression anderer futterbezogener Verhaltensweisen, wie z.B. die naive Zuckerpr{\"a}ferenz, aus. Nachdem ich den drastischen Einfluss des F{\"u}tterungszustands auf die Auspr{\"a}gung des zuckerkonditionierten Verhaltens gezeigt bzw. best{\"a}tigt hatte, habe ich nach verhaltensregulierenden Faktoren gesucht, die bei einer F{\"u}tterung die Ged{\"a}chtnisexpression unterdr{\"u}cken. Als m{\"o}gliche Kandidaten untersuchte ich Parameter, die zum Teil bereits bei verschiedenen futterbezogenen Verhaltensweisen unterschiedlicher Tierarten als „S{\"a}ttigungssignale" identifiziert worden waren (Marty et al. 2007; Powley and Phillips 2004; Havel 2001; Bernays and Chapman 1974; Simpson and Bernays 1983; Gelperin 1971a). Dabei stellte sich heraus, dass weder die „ern{\"a}hrende" Eigenschaft des Futters, noch ein durch Futteraufnahme bedingter Anstieg der internen Glukosekonzentration f{\"u}r die Suppression des zuckerkonditionierten Ged{\"a}chtnisses notwendig sind. Die Unterdr{\"u}ckung der Ged{\"a}chtnisexpression kann auch nicht durch Unterschiede in den aufgenommenen Futtermengen, die als verhaltensinhibitorische Dehnungssignale des Verdauungstrakts wirken k{\"o}nnten, oder mit der St{\"a}rke des s{\"u}ßen Geschmacks erkl{\"a}rt werden. Die Suppression des zuckerbelohnten Verhaltens folgte den Konzentrationen der gef{\"u}tterten Substanzen und war unabh{\"a}ngig von deren chemischen Spezifit{\"a}t. Deshalb wird die Osmolarit{\"a}t des aufgenommenen Futters als ein entscheidender Faktor f{\"u}r die Unterdr{\"u}ckung der zuckerkonditionierten Ged{\"a}chtnisexpression angenommen. Weil nur inkorporierte Substanzen einen Unterdr{\"u}ckungseffekt hatten, wird ein osmolarit{\"a}tsdetektierender Mechanismus im K{\"o}rper 67 postuliert, wahrscheinlich im Verdauungstrakt und/oder der H{\"a}molymphe. Die H{\"a}molymphosmolarit{\"a}t ist als „S{\"a}ttigungssignal" bei einigen wirbellosen Tieren bereits nachgewiesen worden (Bernays and Chapman 1974; Simpson and Raubenheimer 1993; Gelperin 1971a; Phifer and Prior 1985). Deshalb habe ich mit Hilfe genetischer Methoden und ohne die Fliegen zu f{\"u}ttern, versucht {\"u}ber einen k{\"u}nstlich induzierten Anstieg der Trehaloseund Lipidkonzentrationen die Osmolarit{\"a}t der H{\"a}molymphe in Drosophila zu erh{\"o}hen. Eine solche konzentrationserh{\"o}hende Wirkung f{\"u}r Lipide und die Trehalose, dem Hauptblutzucker der Insekten, ist bereits f{\"u}r das adipokinetische Hormon (AKH), das von Zellen der Corpora cardiaca exprimiert wird, nachgewiesen worden (Kim and Rulifson 2004; Lee and Park 2004; Isabel et al. 2005). Es stellte sich heraus, dass die k{\"u}nstliche Stimulierung AKH-produzierender Neurone das zuckerkonditionierten Verhalten tempor{\"a}r, reversible und selektiv unterdr{\"u}ckt. Gleiche Behandlungen hatten keinen Effekt auf ein aversiv konditioniertes olfaktorisches Ged{\"a}chtnis oder ein naives Zuckerpr{\"a}ferenzverhalten. Wie aus dieser Arbeit hervorgeht, stellt wahrscheinlich die Osmolarit{\"a}t des Verdauungstrakts und der H{\"a}molymphe oder nur der H{\"a}molymphe ein physiologisches Korrelat zum F{\"u}tterungszustand dar und wirkt als unterdr{\"u}ckendes Signal. Dass F{\"u}tterungen das zuckerkonditionierte Verhalten und die Zuckerpr{\"a}ferenz supprimieren, die k{\"u}nstliche Stimulation AKH-produzierender Zellen aber selektiv nur die zuckerbelohnte Ged{\"a}chtnisexpression unterdr{\"u}ckt, deutet auf mindestens zwei unterschiedliche „S{\"a}ttigungssignalwege" hin. Außerdem macht es deutlich wie uneinheitlich futterbezogene Verhaltensweisen, wie das zuckerbelohnte Verhalten und die naive Zuckerpr{\"a}ferenz, reguliert werden.}, subject = {Taufliege}, language = {de} } @phdthesis{Guan2016, author = {Guan, Chonglin}, title = {Functional and genetic dissection of mechanosensory organs of \(Drosophila\) \(melanogaster\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146220}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {In Drosophila larvae and adults, chordotonal organs (chos) are highly versatile mechanosensors that are essential for proprioception, touch sensation and hearing. Chos share molecular, anatomical and functional properties with the inner ear hair cells of mammals. These multiple similarities make chos powerful models for the molecular study of mechanosensation. In the present study, I have developed a preparation to directly record from the sensory neurons of larval chos (from the lateral chos or lch5) and managed to correlate defined mechanical inputs with the corresponding electrical outputs. The findings of this setup are described in several case studies. (1) The basal functional lch5 parameters, including the time course of response during continuous mechanical stimulation and the recovery time between successive bouts of stimulation, was characterized. (2) The calcium-independent receptor of α-latrotoxin (dCIRL/Latrophilin), an Adhesion class G protein-coupled receptor (aGPCR), is identified as a modulator of the mechanical signals perceived by lch5 neurons. The results indicate that dCIRL/Latrophilin is required for the perception of external and internal mechanical stimuli and shapes the sensitivity of neuronal mechanosensation. (3) By combining this setup with optogenetics, I have confirmed that dCIRL modulates lch5 neuronal activity at the level of their receptor current (sensory encoding) rather than their ability to generate action potentials. (4) dCIRL´s structural properties (e.g. ectodomain length) are essential for the mechanosensitive properties of chordotonal neurons. (5) The versatility of chos also provides an opportunity to study multimodalities at multiple levels. In this context, I performed an experiment to directly record neuronal activities at different temperatures. The results show that both spontaneous and mechanically evoked activity increase in proportion to temperature, suggesting that dCIRL is not required for thermosensation in chos. These findings, from the development of an assay of sound/vibration sensation, to neuronal signal processing, to molecular aspects of mechanosensory transduction, have provided the first insights into the mechanosensitivity of dCIRL. In addition to the functional screening of peripheral sensory neurons, another electrophysiological approach was applied in the central nervous system: dCIRL may impact the excitability of the motor neurons in the ventral nerve cord (VNC). In the second part of my work, whole-cell patch clamp recordings of motor neuron somata demonstrated that action potential firing in the dCirl\(^K\)\(^O\) did not differ from control samples, indicating comparable membrane excitability.}, subject = {Taufliege}, language = {en} } @phdthesis{Halder2011, author = {Halder, Partho}, title = {Identification and characterization of synaptic proteins of Drosophila melanogaster using monoclonal antibodies of the Wuerzburg Hybridoma Library}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67325}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {For a large fraction of the proteins expressed in the human brain only the primary structure is known from the genome project. Proteins conserved in evolution can be studied in genetic models such as Drosophila. In this doctoral thesis monoclonal antibodies (mAbs) from the Wuerzburg Hybridoma library are produced and characterized with the aim to identify the target antigen. The mAb ab52 was found to be an IgM which recognized a cytosolic protein of Mr ~110 kDa on Western blots. The antigen was resolved by two-dimensional gel electrophoresis (2DE) as a single distinct spot. Mass spectrometric analysis of this spot revealed EPS-15 (epidermal growth factor receptor pathway substrate clone 15) to be a strong candidate. Another mAb from the library, aa2, was already found to recognize EPS-15, and comparison of the signal of both mAbs on Western blots of 1D and 2D electrophoretic separations revealed similar patterns, hence indicating that both antigens could represent the same protein. Finally absence of the wild-type signal in homozygous Eps15 mutants in a Western blot with ab52 confirmed the ab52 antigen to be EPS-15. Thus both the mAbs aa2 and ab52 recognize the Drosophila homologue of EPS-15. The mAb aa2, being an IgG, is more suitable for applications like immunoprecipitation (IP). It has already been submitted to the Developmental Studies Hybridoma Bank (DSHB) to be easily available for the entire research community. The mAb na21 was also found to be an IgM. It recognizes a membrane associated antigen of Mr ~10 kDa on Western blots. Due to the membrane associated nature of the protein, it was not possible to resolve it by 2DE and due to the IgM nature of the mAb it was not possible to enrich the antigen by IP. Preliminary attempts to biochemically purify the endogenously expressed protein from the tissue, gave promising results but could not be completed due to lack of time. Thus biochemical purification of the protein seems possible in order to facilitate its identification by mass spectrometry. Several other mAbs were studied for their staining pattern on cryosections and whole mounts of Drosophila brains. However, many of these mAbs stained very few structures in the brain, which indicated that only a very limited amount of protein would be available as starting material. Because these antibodies did not produce signals on Western blots, which made it impossible to enrich the antigens by electrophoretic methods, we did not attempt their purification. However, the specific localization of these proteins makes them highly interesting and calls for their further characterization, as they may play a highly specialized role in the development and/or function of the neural circuits they are present in. The purification and identification of such low expression proteins would need novel methods of enrichment of the stained structures.}, subject = {Taufliege}, language = {en} } @book{Halder2022, author = {Halder, Partho}, title = {Identification and characterization of synaptic proteins of Drosophila melanogaster using monoclonal antibodies of the Wuerzburg Hybridoma Library}, doi = {10.25972/OPUS-27020}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270205}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {For a large fraction of the proteins expressed in the human brain only the primary structure is known from the genome project. Proteins conserved in evolution can be studied in genetic models such as Drosophila. In this doctoral thesis monoclonal antibodies (mAbs) from the Wuerzburg Hybridoma library are produced and characterized with the aim to identify the target antigen. The mAb ab52 was found to be an IgM which recognized a cytosolic protein of Mr ~110 kDa on Western blots. The antigen was resolved by two-dimensional gel electrophoresis (2DE) as a single distinct spot. Mass spectrometric analysis of this spot revealed EPS-15 (epidermal growth factor receptor pathway substrate clone 15) to be a strong candidate. Another mAb from the library, aa2, was already found to recognize EPS-15, and comparison of the signal of both mAbs on Western blots of 1D and 2D electrophoretic separations revealed similar patterns, hence indicating that both antigens could represent the same protein. Finally absence of the wild-type signal in homozygous Eps15 mutants in a Western blot with ab52 confirmed the ab52 antigen to be EPS-15. Thus both the mAbs aa2 and ab52 recognize the Drosophila homologue of EPS-15. The mAb aa2, being an IgG, is more suitable for applications like immunoprecipitation (IP). It has already been submitted to the Developmental Studies Hybridoma Bank (DSHB) to be easily available for the entire research community. The mAb na21 was also found to be an IgM. It recognizes a membrane associated antigen of Mr ~10 kDa on Western blots. Due to the membrane associated nature of the protein, it was not possible to resolve it by 2DE and due to the IgM nature of the mAb it was not possible to enrich the antigen by IP. Preliminary attempts to biochemically purify the endogenously expressed protein from the tissue, gave 99 promising results but could not be completed due to lack of time. Thus biochemical purification of the protein seems possible in order to facilitate its identification by mass spectrometry. Several other mAbs were studied for their staining pattern on cryosections and whole mounts of Drosophila brains. However, many of these mAbs stained very few structures in the brain, which indicated that only a very limited amount of protein would be available as starting material. Because these antibodies did not produce signals on Western blots, which made it impossible to enrich the antigens by electrophoretic methods, we did not attempt their purification. However, the specific localization of these proteins makes them highly interesting and calls for their further characterization, as they may play a highly specialized role in the development and/or function of the neural circuits they are present in. The purification and identification of such low expression proteins would need novel methods of enrichment of the stained structures.}, subject = {Taufliege}, language = {en} } @phdthesis{Hampel2007, author = {Hampel, Stefanie}, title = {Funktionelle Analyse des Einflusses von putativen T-Beta-H-positiven Neuronen auf das ethanolinduzierte Verhalten von Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-25600}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Es sollten neuronale Netzwerke in Drosophila melanogaster identifiziert werden, die in die Entwicklung von ethanolinduziertem Verhalten involviert sind. Mittels der Tyramin-beta-Hydroxylase (TbH) wird der letzte Schritt der Biosynthese von Oktopamin aus Tyramin gew{\"a}hrleistet. TbHM18 Mutanten entwickeln eine reduzierte Ethanoltoleranz und haben keine nachweisbaren Oktopamin Konzentrationen (MONASTIRIOTI et al. 1996; SCHOLZ et al. 2000). Die molekulargenetische Ursache dieser Mutante wurde n{\"a}her untersucht. Wahrscheinlich ist die Deletion von einem Teil des Intron 1, des Exon 2 und einem Teil des Intron 2 des TbH-Gens verantwortlich f{\"u}r den Verlust der Tyramin-beta-Hydroxylase. Die Deletion der kodierenden Sequenz f{\"u}hrt jedoch nicht zu einem Leserasterschub in der Aminos{\"a}uresequenz. Demzufolge k{\"o}nnte ein verk{\"u}rztes Protein hergestellt werden. Ferner gibt es zwei Transkripte des TbH-Gens, woraus eventuell zwei Proteine exprimiert werden k{\"o}nnten. Ein Protein w{\"a}re die Tyramin-beta-Hydroxylase und das andere k{\"o}nnte eine Dopamin-beta-Hydroxylase sein. Um m{\"o}glicherweise spezifische putative Subsets von T\&\#61538;H-positiven Neuronen zu markieren, wurden verschiedene GAL4-Treiberlinien mit Hilfe unterschiedlicher Fragmente der Promoterregion des TbH-Gens hergestellt. Mittels des GAL4/UAS Systems konnte die Neurotransmitteraussch{\"u}ttung in putativen TbH-positiven Neuronen der TbH-GAL4-Linien inhibiert werden. Auf diese Weise sollte die Funktion der putativen TbH-positiven Neurone w{\"a}hrend der Entwicklung von Ethanolsensitivit{\"a}t und Toleranz untersucht werden. Das Transgen Tetanustoxin wurde mit der 1.3TbH-GAL4 Treiberlinie in einem bestimmten Set von Neuronen exprimiert. Die Inhibition der Synaptobrevin-abh{\"a}ngigen Neurotransmission in den 1.3T\&\#61538;H-GAL4-positiven Neuronen beeinflusst nicht das ethanolinduzierte Verhalten. Hingegen das Ausschalten der Erregbarkeit der Zellen mit Hilfe eines UAS-Kir2.1 Transgens resultiert in erh{\"o}hter Resistenz gegen{\"u}ber Ethanol. Das heißt, dass Synaptobrevin-unabh{\"a}ngige zellul{\"a}re Mechanismen der Zellen notwendig sind, um ethanolinduziertes Verhalten zu regulieren. Die 1.3TbH-GAL4-Linie exprimiert in einem sehr spezifischen Subset von Neuronen GAL4, bzw. Effektoren. Insgesamt werden \&\#8776; 10 Zellen detektiert. Davon liegen die Somata zweier Neurone caudal und projizieren in die Region der ersten und vierten Bande des F{\"a}cherf{\"o}rmigen K{\"o}rpers. Weitere kleine Ansammlungen von acht Zellen k{\"o}nnen um den {\"O}sophagus und im Bereich des Sub{\"o}sophagialganglion verzeichnet werden. Die mit GFP markierten Neurone exprimieren wahrscheinlich kein Oktopamin. Ferner resultierte die Inhibition der synaptischen Transmission von 6.2TbH-GAL4-positiven Neuronen, mit Hilfe von Tetanustoxin, in einer erh{\"o}hten Ethanolsensitivit{\"a}t. Ebenfalls zu einer ethanolinduzierten Verhaltens{\"a}nderung f{\"u}hrt die Inaktivierung der 6.2TbH-GAL4 Zellen mittels eines UAS-Kir2.1 Transgens. Dabei entwickeln die Fliegen eine erh{\"o}hte Ethanolresistenz. Somit w{\"a}re m{\"o}glich, dass die Entwicklung von Ethanolsensitivit{\"a}t und Resistenz {\"u}ber verschiedene zellul{\"a}re Mechanismen reguliert werden. Die 6.2TbH-GAL4-Linie erm{\"o}glicht die Transgen-Expression in 65-70 Neuronen. Diese innerverieren u.a. das Sub{\"o}sophagialganglion, den {\"O}sophagus, den Ellipsoid K{\"o}rper, das laterale und das dorso-laterale Protocerebrum. F{\"u}nf der Neurone, die sich durch die 6.2TbH-GAL4 Treiberlinie markieren lassen, exprimieren Oktopamin. Dazu geh{\"o}rt ein VUM-Neuron und vier große caudale Zellen. Eine weitere putativ oktopaminerge GAL4-Linie Tdc2-GAL4 wurde mit der UAS-Kir2.1 Effektorlinie gekreuzt und die Nachkommen im Inebriometer gemessen. Bei Inaktivierung der Erregbarkeit der Tdc2-positiven Neurone resultiert dies in einer erh{\"o}hten Ethanolsensitivit{\"a}t, hingegen in keiner Ver{\"a}nderung der Toleranz. Die reduzierten Levels an Oktopamin spielen dabei wahrscheinlich eine Rolle. Hingegen regulieren eventuelle neurosekretorische Zellen {\"u}ber andere Mechanismen die Ethanolresistenz, wie die 6.2TbH-GAL4, UAS-Kir2.1 Fliegen zeigen. Es konnte gezeigt werden, dass unterschiedliche Neuronencluster f{\"u}r verschiedene ethanolinduzierte Verhaltensantworten verantwortlich sind. Da wahrscheinlich neurosekretorische Zellen des PI die Ethanolresistenz beeinflussen (RODAN et al. 2002), hingegen den Zentralkomplex-innervierende Zellen eher f{\"u}r die Entwicklung von Ethanolsensitivit{\"a}t und Toleranz notwendig sind (URIZAR et al. 2007).}, subject = {Taufliege}, language = {de} } @phdthesis{Hartlieb2020, author = {Hartlieb, Heiko}, title = {Functional analysis of Mushroom body miniature's RGG-box and its role in neuroblast proliferation in Drosophila melanogaster}, doi = {10.25972/OPUS-19967}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199674}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Development of the central nervous system in Drosophila melanogaster relies on neural stem cells called neuroblasts. Neuroblasts divide asymmetrically to give rise to a new neuroblast as well as a small daughter cell which eventually generates neurons or glia cells. Between each division, neuroblasts have to re-grow to be able to divide again. In previous studies, it was shown that neuroblast proliferation, cell size and the number of progeny cells is negatively affected in larvae carrying a P-element induced disruption of the gene mushroom body miniature (mbm). This mbm null mutation called mbmSH1819 is homozygously lethal during pupation. It was furthermore shown that the nucleolar protein Mbm plays a role in the processing of ribosomal RNA (rRNA) as well as the translocation of ribosomal protein S6 (RpS6) in neuroblasts and that it is a transcriptional target of Myc. Therefore, it was suggested that Mbm might regulate neuroblast proliferation through a role in ribosome biogenesis. In the present study, it was attempted to further elucidate these proposed roles of Mbm and to identify the protein domains that are important for those functions. Mbm contains an arginine/glycine rich region in which a di-RG as well as a di-RGG motif could be found. Together, these two motifs were defined as Mbm's RGG-box. RGG-boxes can be found in many proteins of different families and they can either promote or inhibit protein-RNA as well as protein-protein interactions. Therefore, Mbm's RGG-box is a likely candidate for a domain involved in rRNA binding and RpS6 translocation. It could be shown by deletion of the RGG-box, that MbmdRGG is unable to fully rescue survivability and neuroblast cell size defects of the null mutation mbmSH1819. Furthermore, Mbm does indeed rely on its RGG-box for the binding of rRNA in vitro and in mbmdRGG as well as mbmSH1819 mutants RpS6 is partially delocalized. Mbm itself also seems to depend on the RGG-box for correct localization since MbmdRGG is partially delocalized to the nucleus. Interestingly, protein synthesis rates are increased in mbmdRGG mutants, possibly induced by an increase in TOR expression. Therefore, Mbm might possess a promoting function in TOR signaling in certain conditions, which is regulated by its RGG-box. Moreover, RGG-boxes often rely on methylation by protein arginine methyltransferases (in Drosophila: Darts - Drosophila arginine methyltransferases) to fulfill their functions. Mbm might be symmetrically dimethylated within its RGG-box, but the results are very equivocal. In any case, Dart1 and Dart5 do not seem to be capable of Mbm methylation. Additionally, Mbm contains two C2HC type zinc-finger motifs, which could be involved in rRNA binding. In an earlier study, it was shown that the mutation of the zinc-fingers, mbmZnF, does not lead to changes in neuroblast cell size, but that MbmZnF is delocalized to the cytoplasm. In the present study, mbmZnF mutants were included in most experiments. The results, however, are puzzling since mbmZnF mutant larvae exhibit an even lower viability than the mbm null mutants and MbmZnF shows stronger binding to rRNA than wild-type Mbm. This suggests an unspecific interaction of MbmZnF with either another protein, DNA or RNA, possibly leading to a dominant negative effect by disturbing other interaction partners. Therefore, it is difficult to draw conclusions about the zinc-fingers' functions. In summary, this study provides further evidence that Mbm is involved in neuroblast proliferation as well as the regulation of ribosome biogenesis and that Mbm relies on its RGG-box to fulfill its functions.}, subject = {Taufliege}, language = {en} } @phdthesis{Herter2015, author = {Herter, Eva Kristine}, title = {Characterization of direct Myc target genes in Drosophila melanogaster and Investigating the interaction of Chinmo and Myc}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122272}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The correct regulation of cell growth and proliferation is essential during normal animal development. Myc proteins function as transcription factors, being involved in the con-trol of many growth- and proliferation-associated genes and deregulation of Myc is one of the main driving factors of human malignancies. The first part of this thesis focuses on the identification of directly regulated Myc target genes in Drosophila melanogaster, by combining ChIPseq and RNAseq approaches. The analysis results in a core set of Myc target genes of less than 300 genes which are mainly involved in ribosome biogenesis. Among these genes we identify a novel class of Myc targets, the non-coding small nucleolar RNAs (snoRNAs). In vivo studies show that loss of snoRNAs not only impairs growth during normal development, but that overexpression of several snoRNAs can also enhance tumor development in a neu-ronal tumor model. Together the data show that Myc acts as a master regulator of ribo-some biogenesis and that Myc's transforming effects in tumor development are at least partially mediated by the snoRNAs. In the second part of the thesis, the interaction of Myc and the Zf-protein Chinmo is described. Co-immunoprecipitations of the two proteins performed under endogenous and exogenous conditions show that they interact physically and that neither the two Zf-domains nor the BTB/POZ-domain of Chinmo are important for this interaction. Fur-thermore ChIP experiments and Myc dependent luciferase assays show that Chinmo and Myc share common target genes, and that Chinmo is presumably also involved in their regulation. While the exact way of how Myc and Chinmo genetically interact with each other still has to be investigated, we show that their interaction is important in a tumor model. Overexpression of the tumor-suppressors Ras and Chinmo leads to tu-mor formation in Drosophila larvae, which is drastically impaired upon loss of Myc.}, subject = {Myc}, language = {en} } @phdthesis{Hieke2019, author = {Hieke, Marie}, title = {Synaptic arrangements and potential communication partners of \(Drosophila's\) PDF-containing clock neurons within the accessory medulla}, doi = {10.25972/OPUS-17598}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175988}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Endogenous clocks regulate physiological as well as behavioral rhythms within all organisms. They are well investigated in D. melanogaster on a molecular as well as anatomical level. The neuronal clock network within the brain represents the center for rhythmic activity control. One neuronal clock subgroup, the pigment dispersing factor (PDF) neurons, stands out for its importance in regulating rhythmic behavior. These neurons express the neuropeptide PDF (pigment dispersing factor). A small neuropil at the medulla's edge, the accessory medulla (AME), is of special interest, as it has been determined as the main center for clock control. It is not only highly innervated by the PDF neurons but also by terminals of all other clock neuron subgroups. Furthermore, terminals of the photoreceptors provide light information to the AME. Many different types of neurons converge within the AME and afterward spread to their next target. Thereby the AME is supplied with information from a variety of brain regions. Among these neurons are the aminergic ones whose receptors' are expressed in the PDF neurons. The present study sheds light onto putative synaptic partners and anatomical arrangements within the neuronal clock network, especially within the AME, as such knowledge is a prerequisite to understand circadian behavior. The aminergic neurons' conspicuous vicinity to the PDF neurons suggests synaptic communication among them. Thus, based on former anatomical studies regarding this issue detailed light microscopic studies have been performed. Double immunolabellings, analyses of the spatial relation of pre- and postsynaptic sites of the individual neuron populations with respect to each other and the identification of putative synaptic partners using GRASP reenforce the hypothesis of synaptic interactions within the AME between dopaminergic/ serotonergic neurons and the PDF neurons. To shed light on the synaptic partners I performed first steps in array tomography, as it allows terrific informative analyses of fluorescent signals on an ultrastructural level. Therefore, I tested different ways of sample preparation in order to achieve and optimize fluorescent signals on 100 nm thin tissue sections and I made overlays with electron microscopic images. Furthermore, I made assumptions about synaptic modulations within the neuronal clock network via glial cells. I detected their cell bodies in close vicinity to the AME and PDFcontaining clock neurons. It has already been shown that glial cells modulate the release of PDF from s-LNvs' terminals within the dorsal brain. On an anatomical level this modulation appears to exist also within the AME, as synaptic contacts that involve PDF-positive dendritic terminals are embedded into glial fibers. Intriguingly, these postsynaptic PDF fibers are often VIIAbstract part of dyadic or even multiple-contact sites in opposite to prolonged presynaptic active zonesimplicating complex neuronal interactions within the AME. To unravel possible mechanisms of such synaptic arrangements, I tried to localize the ABC transporter White. Its presence within glial cells would indicate a recycling mechanism of transmitted amines which allows their fast re-provision. Taken together, synapses accompanied by glial cells appear to be a common arrangement within the AME to regulate circadian behavior. The complexity of mechanisms that contribute in modulation of circadian information is reflected by the complex diversity of synaptic arrangements that involves obviously several types of neuron populations}, subject = {Taufliege}, language = {en} } @phdthesis{HornneeBunz2020, author = {Horn [n{\´e}e Bunz], Melanie}, title = {The impact of Drosophila melanogaster`s endogenous clock on fitness: Influence of day length, humidity and food composition}, doi = {10.25972/OPUS-21141}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211415}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {We are living in a system that underlies permanent environmental changes due to the rotation of our planet. These changes are rhythmic with the most prominent one having a period of about 24 hours, but also shorter and longer rhythms characterize our environment. To cope with the ever-changing environmental conditions, it is thought to be beneficial if an organism can track and anticipate these changes. The so called endogenous clocks enable this and might provide a fitness advantage. To investigate and unravel the mechanism of endogenous clocks Chronobiologists have used different model organisms. In this thesis Drosophila melanogaster was used as model organism with its about 150 clock neurons representing the main endogenous clock of the fly in the central brain. The molecular mechanisms and the interlocked feedback loops with the main circadian key players like period, timeless, clock or cycle are under investigation since the 1970s and are characterized quite well so far. But the impact of a functional endogenous clock in combination with diverse factors and the resulting fitness advantages were analysed in only a few studies and remains for the most part unknown. Therefore the aim of this thesis was to unravel the impact of Drosophila melanogaster`s endogenous clock on the fitness of the fly. To achieve this goal different factors - like day length, humidity and food composition - were analyzed in wild type CS and three different period mutants, namely perL, perS and per01, that carry a point mutation altering or abolishing the free-running period of the fruit fly as well as a second arrhythmic strain, clkAR. In competition assay experiments wild type and clock mutant flies competed for up to 63 generations under a normal 24 hour rhythm with 12 hours light/day and 12 hours darkness/night (LD12:12) or T-cycles with 19 or 29 hours, according to the mutants free-running period, or constant light (LL) in case of the arrhythmic mutant as well as under natural-like outdoor conditions in two consecutive years. Overall the wild type CS strain was outcompeting the clock mutant strains independent of the environmental conditions. As the perL fly strain elongated their free-running period, the competition experiments were repeated with naturally cantonized new fly strains. With these experiments it could be shown that the genetic background of the fly strains - which are kept for decades in the lab, with backcrosses every few years - is very important and influences the fitness of flies. But also the day length impacts the fitness of the flies, enabling them to persist in higher percentage in a population under competition. Further factors that might influence the survival in a competing population were investigated, like e.g. mating preferences and locomotor activity of homo- and heterozygous females or sperm number of males transferred per mating. But these factors can still not explain the results in total and play no or only minor roles and show the complexity of the whole system with still unknown characteristics. Furthermore populations of flies were recorded to see if the flies exhibit a common locomotor activity pattern or not and indeed a population activity pattern could be recorded for the first time and social contact as a Zeitgeber could be verified for Drosophila melanogaster. In addition humidity and its impact on the flies´ fitness as well as a potential Zeitgeber was examined in this thesis. The flies experienced different relative humidities for eclosion and wing expansion and humidity cycle phase shifting experiments were performed to address these two different questions of fitness impact and potential Zeitgeber. The fruit fly usually ecloses in the morning hours when the relative humidity is quite high and the general assumption was that they do so to prevent desiccation. The results of this thesis were quite clear and demonstrate that the relative humidity has no great effect on the fitness of the flies according to successful eclosion or wing expansion and that temperature might be the more important factor. In the humidity cycle phase shifting experiments it could be revealed that relative humidity cannot act as a Zeitgeber for Drosophila melanogaster, but it influences and therefore masks the activity of flies by allowing or surpressing activity at specific relative humidity values. As final experiments the lifespan of wild type and clock mutant flies was investigated under different day length and with different food qualities to unravel the impact of these factors on the fitness and therefore survival of the flies on the long run. As expected the flies with nutrient-poor minimum medium died earlier than on the nutrient-rich maximum medium, but a small effect of day length could also be seen with flies living slightly longer when they experience environmental day length conditions resembling their free-running period. The experiments also showed a fitness advantage of the wild type fly strain against the clock mutant strains for long term, but not short term (about the first 2-3 weeks). As a conclusion it can be said that genetic variation is important to be able to adapt to changing environmental conditions and to optimize fitness and therefore survival. Having a functional endogenous clock with a free-running period of about 24 hours provides fitness advantages for the fruit fly, at least under competition. The whole system is very complex and many factors - known and unknown ones - play a role in this system by interacting on different levels, e.g. physiology, metabolism and/or behavior.}, subject = {Taufliege}, language = {en} } @phdthesis{Hovhanyan2014, author = {Hovhanyan, Anna}, title = {Functional analyses of Mushroom body miniature (Mbm) in growth and proliferation of neural progenitor cells in the central brain of Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-91303}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Zellwachstum und Zellteilung stellen zwei miteinander verkn{\"u}pfte Prozesse dar, die dennoch grunds{\"a}tzlich voneinander zu unterscheiden sind. Die Wiederaufnahme der Proliferation von neuralen Vorl{\"a}uferzellen (Neuroblasten) im Zentralhirn von Drosophila nach der sp{\"a}t-embryonalen Ruhephase erfordert zun{\"a}chst Zellwachstum. Der Erhalt der regul{\"a}ren Zellgr{\"o}ße ist eine wichtige Voraussetzung f{\"u}r die kontinuierliche Proliferation der Neuroblasten {\"u}ber die gesamte larvale Entwicklungsphase. Neben extrinsischen Ern{\"a}hrungssignalen ist f{\"u}r das Zellwachstum eine kontinuierliche Versorgung mit funktionellen Ribosomen notwendig, damit die Proteinsynthese aufrechterhalten werden kann. Mutationen im mushroom body miniature (mbm) Gen wurden {\"u}ber einen genetischen Screen nach strukturellen Gehirnmutanten identifiziert. Der Schwerpunkt dieser Arbeit lag in der funktionellen Charakterisierung des Mbm Proteins als neues nukleol{\"a}res Protein und damit seiner m{\"o}glichen Beteiligung in der Ribosomenbiogenese. Der Vergleich der relativen Expressionslevel von Mbm und anderen nuklearen Proteinen in verschiedenen Zelltypen zeigte eine verst{\"a}rkte Expression von Mbm in der fibrill{\"a}ren Komponente des Nukleolus von Neuroblasten. Diese Beobachtung legte die Vermutung nahe, dass in Neuroblasten neben generell ben{\"o}tigten Faktoren der Ribosomenbiogenese auch Zelltyp-spezifische Faktoren existieren. Mutationen in mbm verursachen Proliferationsdefekte von Neuroblasten, wirken sich jedoch nicht auf deren Zellpolarit{\"a}t, die Orientierung der mitotischen Spindel oder die Asymmetrie der Zellteilung aus. Stattdessen wurde eine Reduktion der Zellgr{\"o}ße beobachtet, was im Einklang mit einer Beeintr{\"a}chtigung der Ribosomenbiogenese steht. Insbesondere f{\"u}hrt der Verlust der Mbm Funktion zu einer Retention der kleinen ribosomalen Untereinheit im Nukleolus, was eine verminderte Proteinsynthese zur Folge hat. Interessanterweise wurden St{\"o}rungen der Ribosomenbiogenese nur in den Neuroblasten beobachtet. Zudem ist Mbm offensichtlich nicht erforderlich, um Wachstum oder die Proliferation von Zellen der Fl{\"u}gelimginalscheibe und S2-Zellen zu steuern, was wiederum daf{\"u}r spricht, dass Mbm eine Neuroblasten-spezifische Funktion erf{\"u}llt. Dar{\"u}ber hinaus wurden die transkriptionelle Regulation des mbm-Gens und die funktionelle Bedeutung von posttranslationalen Modifikationen analysiert. Mbm Transkription wird von dMyc reguliert. Ein gemeinsames Merkmal von dMyc Zielgenen ist das Vorhandensein einer konservierten „E-Box"-Sequenz in deren Promotorregionen. In der Umgebung der mbm-Transkriptionsstartstelle befinden sich zwei „E-Box"-Motive. Mit Hilfe von Genreporteranalysen konnte nachgewiesen werden, dass nur eine von ihnen die dMyc-abh{\"a}ngige Transkription vermittelt. Die dMyc-abh{\"a}ngige Expression von Mbm konnte auch in Neuroblasten verifiziert werden. Auf posttranslationaler Ebene wird Mbm durch die Proteinkinase CK2 phosphoryliert. In der C-terminalen H{\"a}lfte des Mbm Proteins wurden in zwei Clustern mit einer Abfolge von sauren Aminos{\"a}uren sechs Serin- und Threoninreste als CK2- Phosphorylierungsstellen identifiziert. Eine Mutationsanalyse dieser Stellen best{\"a}tigte deren Bedeutung f{\"u}r die Mbm Funktion in vivo. Weiterhin ergaben sich Evidenzen, dass die Mbm-Lokalisierung durch die CK2-vermittelte Phosphorylierung gesteuert wird. Obwohl die genaue molekulare Funktion von Mbm in der Ribosomenbiogenese noch im Unklaren ist, unterstreichen die Ergebnisse dieser Studie die besondere Rolle von Mbm in der Ribosomenbiogenese von Neuroblasten um Zellwachstum und Proliferation zu regulieren.}, subject = {Taufliege}, language = {en} } @phdthesis{Huber2003, author = {Huber, Saskia}, title = {Charakterisierung von SAP47 in Drosophila melanogaster und der dazugeh{\"o}rigen Proteinfamilie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7777}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {In der Arbeit wird ein synapsenassoziiertes Protein, das SAP47 und seine zugeh{\"o}rige Proteinfamilie charakterisiert.}, subject = {Taufliege}, language = {de} } @phdthesis{Jauch2010, author = {Jauch, Mandy}, title = {Die Serin/Arginin Proteinkinase 79D (SRPK79D) von Drosophila melanogaster und ihre Rolle bei der Bildung Aktiver Zonen von Synapsen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53974}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Synapsen als Stellen der Kommunikation zwischen Neuronen besitzen spezialisierte Bereiche - Aktive Zonen (AZs) genannt -, die aus einem hoch komplexen Netzwerk von Proteinen aufgebaut sind und die Maschinerie f{\"u}r den Prozess der Neurotransmitter-Aussch{\"u}ttung und das Vesikel-Recycling beinhalten. In Drosophila ist das Protein Bruchpilot (BRP) ein wichtiger Baustein f{\"u}r die T-f{\"o}rmigen B{\"a}nder („T-Bars") der pr{\"a}synaptischen Aktiven Zonen. BRP ist notwendig f{\"u}r eine intakte Struktur der Aktiven Zone und eine normale Exocytose von Neurotransmitter-Vesikeln. Auf der Suche nach Mutationen, welche die Verteilung von Bruchpilot im Gewebe beeintr{\"a}chtigen, wurde eine P-Element-Insertion im Gen CG11489 an der Position 79D identifiziert, welches eine Kinase kodiert, die einen hohen Grad an Homologie zur Familie der SR Proteinkinasen (SRPKs) von S{\"a}ugern aufweist. Die Mitglieder dieser Familie zeichnen sich durch eine evolution{\"a}r hoch konservierte zweigeteilte Kinasedom{\"a}ne aus, die durch eine nicht konservierte Spacer-Sequenz unterbrochen ist. SRPKs phosphorylieren SR-Proteine, die zu einer evolution{\"a}r hoch konservierten Familie Serin/Arginin-reicher Spleißfaktoren geh{\"o}ren und konstitutive sowie alternative Spleißprozesse steuern und damit auf post-transkriptioneller Ebene die Genexpression regulieren. Mutation des Srpk79D-Gens durch die P-Element-Insertion (Srpk79DP1) oder eine Deletion im Gen (Srpk79DVN Nullmutante) f{\"u}hrt zu auff{\"a}lligen BRP-Akkumulationen in larvalen und adulten Nerven. In der vorliegenden Arbeit wird gezeigt, dass diese BRP-Akkumulationen auf Ultrastruktur-Ebene ausgedehnten axonalen Agglomeraten elektronendichter B{\"a}nder entsprechen und von klaren Vesikeln umgeben sind. Charakterisierung durch Immuno-Elektronenmikroskopie ergab, dass diese Strukturen BRP-immunoreaktiv sind. Um die Bildung BRP-enthaltender Agglomerate in Axonen zu verhindern und damit eine intakte Gehirnfunktion zu gew{\"a}hrleisten, scheint die SRPK79D nur auf niedrigem Niveau exprimiert zu werden, da die endogene Kinase mit verschiedenen Antik{\"o}rpern nicht nachweisbar war. Wie in anderen Arbeiten gezeigt werden konnte, ist die Expression der PB-, PC- oder PF-Isoform der vier m{\"o}glichen SRPK79D-Varianten, die durch alternativen Transkriptionsstart in Exon eins beziehungsweise drei und alternatives Spleißen von Exon sieben zustande kommen, zur Rettung des Ph{\"a}notyps der BRP-Akkumulation im Srpk79DVN Nullmutanten-Hintergrund ausreichend. Zur Charakterisierung der Rescue-Eigenschaften der SRPK79D-PE-Isoform wurde mit der Klonierung der cDNA in einen UAS-Vektor begonnen. Offenbar beruht die Bildung der axonalen BRP-Agglomerate nicht auf einer {\"U}berexpression von BRP in den betroffenen Neuronen, denn auch bei reduzierter Expression des BRP-Proteins im Srpk79DVN Nullmutanten-Hintergrund entstehen die BRP-Agglomerate. In K{\"o}pfen der Srpk79DVN Nullmutante ist die Gesamtmenge an Bruchpilot-Protein im Vergleich zum Wildtyp nicht deutlich ver{\"a}ndert. Auch die auf Protein-Ebene untersuchte Expression der verschiedenen Isoformen der pr{\"a}synaptischen Proteine Synapsin, Sap47 und CSP weicht in der Srpk79DVN Nullmutante nicht wesentlich von der Wildtyp-Situation ab, sodass sich keine Hinweise auf ver{\"a}ndertes Spleißen der entsprechenden pr{\"a}-mRNAs ergeben. Jedes der sieben bekannten SR-Proteine von Drosophila ist ein potentielles Zielprotein der SRPK79D. Knock-down-Experimente f{\"u}r die drei hier untersuchten SR-Proteine SC35, X16/9G8 und B52/SRp55 im gesamten Nervensystem durch RNA-Interferenz zeigten allerdings keinen Effekt auf die Verteilung von BRP im Gewebe. Hinsichtlich der Flugf{\"a}higkeit der Tiere hat die Srpk79DVN Nullmutation keinen additiven Effekt zum Knock-down des BRP-Proteins, denn die Doppelmutanten zeigten bei der Bestimmung des Anteils an flugunf{\"a}higen Tieren vergleichbare Werte wie die Einzelmutanten, die entweder die Nullmutation im Srpk79D-Gen trugen, oder BRP reduziert exprimierten. Vermutlich sind Bruchpilot und die SR Proteinkinase 79D somit Teil desselben Signalwegs. Durch Doppelf{\"a}rbungen mit Antik{\"o}rpern gegen BRP und CAPA-Peptide wurde abschließend entdeckt, dass Bruchpilot auch im Median- und Transvers-Nervensystem (MeN/TVN) von Drosophila zu finden ist, welche die Neuroh{\"a}mal-Organe beherbergen. Aufgabe dieser Organe ist die Speicherung und Aussch{\"u}ttung von Neuropeptid-Hormonen. Daher ist zu vermuten, dass das BRP-Protein neben Funktionen bei der Neurotransmitter-Exocytose m{\"o}glicherweise eine Rolle bei der Aussch{\"u}ttung von Neuropeptiden spielt. Anders als in den Axonen der larvalen Segmental- und Intersegmentalnerven der Srpk79DVN Nullmutante, die charakteristische BRP-Agglomerate aufweisen, hat die Mutation des Srpk79D-Gens in den Axonen der Va-Neurone, die das MeN/TVN-System bilden, keinen sichtbaren Effekt auf die Verteilung von Brp, denn das Muster bei F{\"a}rbung gegen BRP weist keine deutlichen Ver{\"a}nderungen zum Wildtyp auf.}, subject = {Taufliege}, language = {de} } @phdthesis{Jenett2007, author = {Jenett, Arnim}, title = {The Virtual Insect Brain Protocol : development and application of software for the standardization of neuroanatomy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-22297}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Since the fruit fly Drosophila melanogaster entered the laboratories as a model organism, new genetic, physiological, molecular and behavioral techniques for the functional analysis of the brain rapidly accumulated. Nowadays this concerted assault obtains its main thrust form Gal4 expression patterns that can be visualized and provide the means for manipulating -in unrestrained animals- groups of neurons of the brain. To take advantage of these patterns one needs to know their anatomy. This thesis describes the Virtual Insect Brain (VIB) protocol, a software package for the quantitative assessment, comparison, and presentation of neuroanatomical data. It is based on the 3D-reconstruction and visualization software Amira (Mercury Inc.). Its main part is a standardization procedure which aligns individual 3D images (series of virtual sections obtained by confocal microscopy) to a common coordinate system and computes average intensities for each voxel (volume pixel). The VIB protocol facilitates direct comparison of gene expression patterns and describes their interindividual variability. It provides volumetry of brain regions and helps to characterize the phenotypes of brain structure mutants. Using the VIB protocol does not require any programming skills since all operations are carried out at a (near to) self-explanatory graphical user interface. Although the VIB protocol has been developed for the standardization of Drosophila neuroanatomy, the program structure can be used for the standardization of other 3D structures as well. Standardizing brains and gene expression patterns is a new approach to biological shape and its variability. Using the VIB protocol consequently may help to integrate knowledge on the correlation of form and function of the insect brain. The VIB protocol provides a first set of tools supporting this endeavor in Drosophila. The software is freely available at http://www.neurofly.de.}, subject = {Taufliege}, language = {en} } @phdthesis{Kapustjansky2011, author = {Kapustjansky, Alexander}, title = {In vivo imaging and optogenetic approach to study the formation of olfactory memory and locomotor behaviour in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69535}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Understanding of complex interactions and events in a nervous system, leading from the molecular level up to certain behavioural patterns calls for interdisciplinary interactions of various research areas. The goal of the presented work is to achieve such an interdisciplinary approach to study and manipulate animal behaviour and its underlying mechanisms. Optical in vivo imaging is a new constantly evolving method, allowing one to study not only the local but also wide reaching activity in the nervous system. Due to ease of its genetic accessibility Drosophila melanogaster represents an extraordinary experimental organism to utilize not only imaging but also various optogenetic techniques to study the neuronal underpinnings of behaviour. In this study four genetically encoded sensors were used to investigate the temporal dynamics of cAMP concentration changes in the horizontal lobes of the mushroom body, a brain area important for learning and memory, in response to various physiological and pharmacological stimuli. Several transgenic lines with various genomic insertion sites for the sensor constructs Epac1, Epac2, Epac2K390E and HCN2 were screened for the best signal quality, one line was selected for further experiments. The in vivo functionality of the sensor was assessed via pharmacological application of 8-bromo-cAMP as well as Forskolin, a substance stimulating cAMP producing adenylyl cyclases. This was followed by recording of the cAMP dynamics in response to the application of dopamine and octopamine, as well as to the presentation of electric shock, odorants or a simulated olfactory signal, induced by acetylcholine application to the observed brain area. In addition the interaction between the shock and the simulated olfactory signal by simultaneous presentation of both stimuli was studied. Preliminary results are supporting a coincidence detection mechanism at the level of the adenylyl cyclase as postulated by the present model for classical olfactory conditioning. In a second series of experiments an effort was made to selecticvely activate a subset of neurons via the optogenetic tool Channelrhodopsin (ChR2). This was achieved by recording the behaviour of the fly in a walking ball paradigm. A new method was developed to analyse the walking behaviour of the animal whose brain was made optically accessible via a dissection technique, as used for imaging, thus allowing one to target selected brain areas. Using the Gal4-UAS system the protocerebral bridge, a substructure of the central complex, was highlighted by expressing the ChR2 tagged by fluorescent protein EYFP. First behavioural recordings of such specially prepared animals were made. Lastly a new experimental paradigm for single animal conditioning was developed (Shock Box). Its design is based on the established Heat Box paradigm, however in addition to spatial and operant conditioning available in the Heat Box, the design of the new paradigm allows one to set up experiments to study classical and semioperant olfactory conditioning, as well as semioperant place learning and operant no idleness experiments. First experiments involving place learning were successfully performed in the new apparatus.}, subject = {Taufliege}, language = {en} } @phdthesis{Keller2002, author = {Keller, Andreas}, title = {Genetic Intervention in Sensory Systems of a Fly}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-680}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Die vorliegende Arbeit vergleicht Transgene, die in Drosophila Neuronen exprimiert wurden, um diese abzut{\"o}ten oder zu blockieren. Tetanus Neurotoxin erwies sich als sehr effizient, um chemische Synapsen zu blockieren. Synapsen, die aus einer chemischen und einer elektrischen Komponente bestehen, ließen sich dagegen mit einem ektopisch exprimierten humanen Kalium-Kanal zuverl{\"a}ssiger ausschalten. Es wurden drei M{\"o}glichkeiten verglichen, eine zeitliche Kontrolle {\"u}ber die Funktion von Neuronen zu erlangen. Keines der getesteten Systeme erwies sich als universell anwendbar, aber die durch Rekombination induzierte Tetanus Neurotoxin Expression ist ein vielversprechender Ansatz. Die aus dieser vergleichenden methodischen Studie gewonnenen Ergebnisse wurden angewendet, um die Rolle von Neuronen in sensorischen Systemen bei der Verarbeitung verschiedener sensorischer Informationen zu untersuchen. Chemische und mechanische Rezeptorneuronen konnten den olfaktorisch gesteuerten Verhaltensweisen beziehungsweise den lokomotorischen Leistungen, denen sie zu Grunde liegen, zugeordnet werden. Hauptthema der Arbeit ist die Suche nach Neuronen, die an der Bewegungsdetektion im visuellen System beteiligt sind. Dabei zeigte sich, daß weder L2 noch L4 Neuronen im ersten visuellen Neuropil essentiell f{\"u}r die Detektion von Bewegung sind. Vielmehr deuten die Ergebnisse darauf hin, daß die Bewegungsdetektion {\"u}ber das Netzwerk der amacrinen Zellen (a) erfolgt. Die f{\"u}r vertikale Bewegung sensitiven VS Zellen in der Lobula Platte erwiesen sich als nicht notwendig f{\"u}r die Verhaltensreaktionen auf vertikale Bewegungsreize. Daraus folgt auch, daß in der Strukturmutante optomotor blind das Fehlen der VS Zellen nicht urs{\"a}chlich f{\"u}r die stark eingeschr{\"a}nkten Reaktionen auf vertikale Bewegung ist. Ein anderer Defekt in optomotor blind muß daf{\"u}r verantwortlich sein. Die Arbeit zeigt das große Potential der beschriebenen Methoden zur Untersuchung der Informationsverarbeitung im Nervensystem von Drosophila. Einzelne Neuronengruppen konnten komplexen Verhaltensweisen zugeordnet werden und Theorien {\"u}ber die Informationsverarbeitung konnten in Verhaltensexperimenten mit transgenen Fliegen getestet werden. Eine weitere Verfeinerung der Methodik zur genetischen Intervention wird das Drosophila Gehirn zu einem noch besseren Modell f{\"u}r die Informationsverarbeitung in Nervensystemen machen.}, subject = {Taufliege}, language = {en} } @phdthesis{Kibler2002, author = {Kibler, Eike Mathias U.}, title = {Casein-Kinase-2-Beta und neuronale Entwicklungsprozesse}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-4202}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Die Pilzk{\"o}rper von Drosophila melanogaster stellen eine f{\"u}r die Lebensf{\"a}higkeit dieses Organismus entbehrliche Gehirnstruktur dar. Die Entwicklungsprozesse, die der Bildung dieser zentralnerv{\"o}sen Struktur zugrunde liegen, sind gut erforscht. Die neuronalen Stammzellen, die f{\"u}r die Bildung dieser Gehirnstruktur verantwortlich sind, sind identifiziert und experimentell gut zug{\"a}nglich. Daher bietet sich die Drosophila-Pilzk{\"o}rperentwicklung als neurogenetisches Modellsystem an, grundlegende Mechanismen der Gehirnentwicklung durch die Untersuchung von Pilzk{\"o}rperstrukturmutanten zu erforschen. In dieser Arbeit wurde mushroom bodies undersized P1 (mbuP1) als eine durch Transposon- Insertion in den Casein-Kinase-2ß-Genlokus verursachte, hypomorphe Mutation identifiziert, die zu einer starken Verringerung der Anzahl der die Pilzk{\"o}rper bildenden intrinsischen Neurone f{\"u}hrt. Eine Reversion des mbuP1-Pilzk{\"o}rperph{\"a}notyps konnte unter anderem durch die Expression von Casein-Kinase-2ß-(CK2ß)-Transgenen im mbuP1-Hintergrund erzielt werden. Durch Rekombination wurde ein fertiler mbuP1-Stamm etabliert, der nun die Untersuchung der zellul{\"a}ren mbuP1-Defekte erm{\"o}glicht. Eine partielle, letale Deletion der CK2ß-Transkriptionseinheit wurde erzeugt. Die Letalit{\"a}t dieser Deletion konnte sowohl durch ein genomisches CK2ß-Transgen als auch durch die ubiquit{\"a}re Expression einer CK2ß-cDNA gerettet, und hierdurch die essentielle Funktion der CK2ß-Transkriptionseinheit in Drosophila belegt werden. Durch die ubiquit{\"a}re Expression von in vitro-mutagenisierten CK2ß-cDNAs im CK2ß-Letalhintergrund wurde gezeigt, daß die Phosphorylierung der regulatorischen CK2ß-Untereinheit durch die katalytisch aktive CK2\&\#945;-Untereinheit kein lebensnotwendiger Prozess ist. Gleichartige Experimente wurden zur Untersuchung der funktionellen Bedeutung eines CK2ß-Zinkfingermotivs und eines CK2ß-Destruction-Box-Motivs durchgef{\"u}hrt. Diese legen nahe, daß das Zinkfingermotiv im Gegensatz zum Destruction-Box-Motiv f{\"u}r die in vivo-Funktion der CK2ß-Untereinheit essentiell ist. Expression der in vitro-mutagenisierten CK2ß-cDNAs im mbuP1-Hintergrund werden die funktionelle Bedeutung der ausgetauschten Aminos{\"a}uren f{\"u}r die Pilzk{\"o}rperentwicklung zeigen. Eine letale genetische Interaktion von mbuP1 mit einer Mutation des Drosophila-MAP-Kinase-Gens rolled (rlSem) und eine lebensf{\"a}hige Interaktion von mbuP1 mit einer Mutation des Drosophila-S6-Kinase-p90rsk-Gens ignorant (ignP1), bei der Fl{\"u}gel- und Augenent-wicklungsdefekte zu beobachten sind, wurden gefunden. Es wurde zudem gezeigt, daß rlSem als Suppressor des Pilzk{\"o}rperph{\"a}notyps eines schw{\"a}cheren mbu-Allels wirkt. Hierdurch konnte eine Beteiligung der Casein-Kinase-2 an MAP-Kinase-Signal{\"u}bertragungswegen wahrscheinlich gemacht werden.}, subject = {Taufliege}, language = {de} } @phdthesis{Knapek2010, author = {Knapek, Stephan}, title = {Synapsin and Bruchpilot, two synaptic proteins underlying specific phases of olfactory aversive memory in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-49726}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Memory is dynamic: shortly after acquisition it is susceptible to amnesic treatments, gets gradually consolidated, and becomes resistant to retrograde amnesia (McGaugh, 2000). Associative olfactory memory of the fruit fly Drosophila melanogaster also shows these features. After a single associative training where an odor is paired with electric shock (Quinn et al., 1974; Tully and Quinn, 1985), flies form an aversive odor memory that lasts for several hours, consisting of qualitatively different components. These components can be dissociated by mutations, their underlying neuronal circuitry and susceptibility to amnesic treatments (Dubnau and Tully, 1998; Isabel et al., 2004; Keene and Waddell, 2007; Masek and Heisenberg, 2008; Xia and Tully, 2007). A component that is susceptible to an amnesic treatment, i.e. anesthesia-sensitive memory (ASM), dominates early memory, but decays rapidly (Margulies et al., 2005; Quinn and Dudai, 1976). A consolidated anesthesia-resistant memory component (ARM) is built gradually within the following hours and lasts significantly longer (Margulies et al., 2005; Quinn and Dudai, 1976). I showed here that the establishment of ARM requires less intensity of shock reinforcement than ASM. ARM and ASM rely on different molecular and/or neuronal processes: ARM is selectively impaired in the radish mutant, whereas for example the amnesiac and rutabaga genes are specifically required for ASM (Dudai et al., 1988; Folkers et al., 1993; Isabel et al., 2004; Quinn and Dudai, 1976; Schwaerzel et al., 2007; Tully et al., 1994). The latter comprise the cAMP signaling pathway in the fly, with the PKA being its supposed major target (Levin et al., 1992). Here I showed that a synapsin null-mutant encoding the evolutionary conserved phosphoprotein Synapsin is selectively impaired in the labile ASM. Further experiments suggested Synapsin as a potential downstream effector of the cAMP/PKA cascade. Similar to my results, Synapsin plays a role for different learning tasks in vertebrates (Gitler et al., 2004; Silva et al., 1996). Also in Aplysia, PKA-dependent phosphorylation of Synapsin has been proposed to be involved in regulation of neurotransmitter release and short-term plasticity (Angers et al., 2002; Fiumara et al., 2004). Synapsin is associated with a reserve pool of vesicles at the presynapse and is required to maintain vesicle release specifically under sustained high frequency nerve stimulation (Akbergenova and Bykhovskaia, 2007; Li et al., 1995; Pieribone et al., 1995; Sun et al., 2006). In contrast, the requirement of Bruchpilot, which is homologous to the mammalian active zone proteins ELKS/CAST (Wagh et al., 2006), is most pronounced in immediate vesicle release (Kittel et al., 2006). Under repeated stimulation of a bruchpilot mutant motor neuron, immediate vesicle release is severely impaired whereas the following steady-state release is still possible (Kittel et al., 2006). In line with that, knockdown of the Bruchpilot protein causes impairment in clustering of Ca2+ channels to the active zones and a lack of electron-dense projections at presynaptic terminals (T-bars). Thus, less synaptic vesicles of the readily-releasable pool are accumulated to the release sites and their release probability is severely impaired (Kittel et al., 2006; Wagh et al., 2006). First, I showed that Bruchpilot is required for aversive olfactory memory and localized the requirement of Bruchpilot to the Kenyon cells of the mushroom body, the second-order olfactory interneurons in Drosophila. Furthermore, I demonstrated that Bruchpilot selectively functions for the consolidated anesthesia-resistant memory. Since Synapsin is specifically required for the labile anesthesia sensitive memory, different synaptic proteins can dissociate consolidated and labile components of olfactory memory and two different modes of neurotransmission (high- vs. low frequency dependent) might differentiate ASM and ARM.}, subject = {Taufliege}, language = {en} } @phdthesis{Kroiss2008, author = {Kroiß, Matthias}, title = {Reinigung und funktionelle Charakterisierung des SMN-Komplexes von Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28840}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Die Zusammenlageurng spleißosomaler UsnRNPs erfolgt beim Menschen und anderen Vertebraten durch den makromolekularen SMN-Komplex. Dieser besteht aus insgesamt neun Proteinen, genannt SMN und Gemin2-8. In dieser Arbeit wurde die Evolution dieser molekularen Maschine untersucht. Dazu wurden die Genome mehrerer Modellorganismen bioinformatisch nach Orthologen von SMN und seinen Komplexpartnern durchsucht. Es zeigte sich, dass SMN und Gemin2 die Kernkomponenten des Komplexes darstellen. Von diesen ausgehend kamen weitere Komponenten im Laufe der Evolution hinzu und zwar blockweise, wie es ihrer physischen Assoziation im humanen Komplex entspricht. Um diese Befunde einer biochemischen {\"U}berpr{\"u}fung zu unterziehen, wurde ein neues Affinit{\"a}tsepitop, das TagIt-Epitop, entwickelt. Nach stabiler Transfektion von Drosophila Schneider2-Zellen konnte das Fusionsprotein effizient exprimiert und der Drosophila-SMN-Komplex nativ aufgereinigt werden. Die massenspektrometrische Untersuchung des Komplexes zeigte, dass SMN und Gemin2 seine einzigen st{\"o}chiometrischen Komponenten sind. Dies ist in eindrucksvoller {\"U}bereinstimmung mit den bioinformatischen Daten. Der aufgereinigte Komplex lagert in vitro Sm-Proteine mit der entsprechenden UsnRNA zum UsnRNP-core-Komplex zusammen. Diese Ergebnisse ließen sich nach rekombinanter Rekonstitution des SMN/Gemin2-Dimers rekapitulieren. Dabei zeigte sich, dass der SMN-Komplex die unkoordinierte Bindung der Sm-Proteine an „falsche" RNAs verhindert. Folglich gen{\"u}gen SMN und Gemin2 zur Zusammenlagerung des Sm-core-Komplexes, w{\"a}hrend die {\"u}brigen Gemine weitere Funktionen im Kontext der UsnRNP-Biogenese spielen k{\"o}nnten. Aus evolutionsbiologischer Sichtweise ist der SMN-Komplex aus Drosophila ein eindr{\"u}ckliches Beispiel, wie die Vereinfachung eines biochemischen Prozesses zur Kompaktierung des Genoms beitragen kann.}, subject = {Taufliege}, language = {de} } @phdthesis{Koenig2016, author = {K{\"o}nig, Sebastian}, title = {Spatially selective visual attention in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134452}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Finding the right behavior at the right time is one of the major tasks of brains. In a natural scenery there is often an abundance of stimuli present and the brain has to separate the relevant from the irrelevant ones. Selective visual attention (SVA) is a property of higher visual systems that achieves this separation, as it allows to '[…] focus on one source of sensory input to the exclusion of others' (Luck and Mangun, 1996). There are probably several forms of SVA depending upon the criteria used for the separation, such as salience, color, location in space, novelty, or motion. Many studies have investigated SVA in humans and non-human primates. However, complex functions like attention were initially not expected to be already implemented in the brains of simple organisms like Drosophila. After a first demonstration of selective attention in the fly (Wolf and Heisenberg, 1980), it took some time until other studies included attentional mechanisms in their argumentation to explain certain behaviors of Drosophila. However, their definition and characterization of attention differed and often was ambiguous. Here, one particular form, spatially selective visual attention in the fly Drosophila is investigated. It has been shown earlier that the fly spontaneously may restrict its behavioral responses in stationary flight to the visual stimuli on one side of the visual field. On the basis of experiments of Sareen et al., (2011) it has been conjectured that the fly has a focus of attention (FoA) and that the fly responds to the visual stimuli within this area of the visual field. Whether the FoA is the adequate concept for this spatial property of SVA in the fly needs to be further discussed and is a subject also of the present study. At this stage, the concept will be used in the description of the new results expanding the characterization of SVA. This study continued the investigation of SVA during tethered flight with variable but controlled visual input and an automated primary data evaluation. This standardized paradigm allowed for analysis of wild-type behavior as well as for a comparison of several mutant and pharmacologically manipulated strains to the wild-type. Some properties of human SVA like the occurrence of externally as well as internally caused shifts of attention were found in Drosophila and it could be shown, that SVA in the fly can be externally guided and has an attention span. Additionally, a neurotransmitter and proteins, which play a significant role in SVA were discovered. Based on this, the genetic tools available for Drosophila provided the means to a first examination of cells and circuits involved in SVA. Finally, the free walk behavior of flies that had been shown to have compromised SVA was characterized. The results suggested that the observed phenotypes of SVA were not behavior specific. Covert shifts of the FoA were investigated. The FoA can be externally guided by visual cues to one or the other side of the visual field and even after the cue has disappeared it remains there for <4s. An intriguing finding of this study is the fact, that the quality of the cue determines whether it is attractive or repellent. For example a cue can be changed from being repellent (negative) to being attractive (positive) by changing its oscillation amplitude from 4° to 2°. Testing the effectiveness of cues in the upper and lower visual field separately, revealed that the perception of a cue by the fly is not exclusively based on a sum of its specifications. Because positive cueing did not have an after-effect in each of the two half-fields alone, but did so if the cue was shown in both, the fly seems to evaluate the cue for each combination of parameters specifically. Whether this evaluation of the cue changed on a trial-to-trial basis or if the cue in some cases failed to shift the FoA can at this point not be determined. Looking at the responses of the fly to the displacement of a black vertical stripe showed that they can be categorized as no responses, syn-directional responses (following the direction of motion of the stripe) and anti-directional responses (in the opposite direction of the motion of the stripe). The yaw-torque patterns of the latter bared similarities with spontaneous body saccades and they most likely represented escape attempts of the fly. Syn-directional responses, however, were genuine object responses, distinguishable by a longer latency until they were elicited and a larger amplitude. These properties as well as the distribution of response polarities were not influenced by the presence or absence of a cue. When two stripes were displaced simultaneously in opposite directions the rate of no responses increased in comparison to the displacement of a single stripe. If one of the stripes was cued, both, the responses towards and away from the side of cue resembled the syn-directional responses. Significant progress was made with the elucidation of the neuronal underpinnings of SVA. Ablation of the mushroom bodies (MB) demonstrated their requirement for SVA. Furthermore, it was shown that dopamine signaling has to be balanced between too much and too little. Either inhibiting the synthesis of dopamine or its re-uptake at the synapse via the dDAT impaired the flies' susceptibility to cueing. Using the Gal4/UAS system, cell specific expression or knockdown of the dDAT was used to scrutinize the role of MB sub-compartments in SVA. The αβ-lobes turned out to be necessary and sufficient to maintain SVA. The Gal4-line c708a labels only a subset of Kenyon cells (KC) within the αβ-lobes, αβposterior. These cells stand out, because of (A) the mesh-like arrangement of their fibers within the lobes and (B) the fact that unlike the other KCs they bypass the calyx and thereby the main source of olfactory input to the MBs, forming connections only in the posterior accessory calyx (Tanaka et al., 2008). This structure receives no or only marginal olfactory input, suggesting for it a role in tasks other than olfaction. This study shows their requirement in a visual task by demonstrating that they are necessary to uphold SVA. Restoring dDAT function in these approximately only 90 cells was probably insufficient to lower the dopamine concentration at the relevant synapses and hence a rescue failed. Alternatively, the processes mediating SVA at the αβ-lobes might require an interplay between all of their KCs. In conclusion, the results provide an initial point for future research to fully understand the localization of and circuitry required for SVA in the brain. In the experiments described so far, attention has been externally guided. However, flies are also able to internally shift their FoA without any cues from the outside world. In a set of 60 consecutive simultaneous displacements of two stripes, they were more likely to produce a response with the same polarity as the preceding one than a random polarity selection predicted. This suggested a dwelling of the FoA on one side of the visual field. Assuming that each response was influenced by the previous one in a way that the probability to repeat the response polarity was increased by a certain factor (dwelling factor, df), a random selection of response type including a df was computed. Implementation of the df removed the difference between observed probability of polarity repetition and the one suggested by random selection. When the interval between displacements was iteratively increased to 5s, no significant df could be detected anymore for pauses longer than 4s. In conclusion, Drosophila has an attention span of approximately 4s. Flies with a mutation in the radish gene expressed no after-effect of cueing and had a shortened attention span of about 1s. The dDAT inhibitor methylphenidate is able to rescue the first, but does not affect the latter phenotype. Probably, radish is differently involved in the two mechanisms. This study showed, that endogenous (covert) shifts of spatially selective visual attention in the fly Drosophila can be internally and externally guided. The variables determining the quality of a cue turned out to be multifaceted and a more systematic approach is needed for a better understanding of what property or feature of the cue changes the way it is evaluated by the fly. A first step has been made to demonstrate that SVA is a fundamental process and compromising it can influence the characteristics of other behaviors like walking. The existence of an attention span, the dependence of SVA on dopamine as well as the susceptibility to pharmacological manipulations, which in humans are used to treat respective diseases, point towards striking similarities between SVA in humans and Drosophila.}, subject = {Taufliege}, language = {en} } @phdthesis{Leibold2003, author = {Leibold, Christian}, title = {Das Cystein String Protein von Drosophila melanogaster - Invivo-Funktionsanalyse verschiedener Proteindom{\"a}nen am Modellsystem der larvalen neuromuskul{\"a}ren Synapse}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7481}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Cystein String Proteine (CSPs) wurden als synaptische Vesikelproteine entdeckt. In Drosophila werden sie in den funktionellen Synapsen und sekretorischen Organellen aller Entwicklungsstufen exprimiert. Es konnte gezeigt werden, dass CSPs an der regulierten Neurotransmitteraussch{\"u}ttung beteiligt sind und mehrere, von Insekten bis zum Menschen konservierte Dom{\"a}nen besitzen: eine N-terminale Phosphorylierungsstelle der Protein Kinase A (PKA), eine J-Dom{\"a}ne mit 50\%iger Homologie zum bakteriellen Chaperone-Protein DnaJ, eine Linker-Dom{\"a}ne, einen Cystein String aus elf aufeinander folgenden Cysteinen, die durch zwei Cystein-Paare flankiert werden und einen variableren C-Terminus. Es wurden Interaktionen mit den Proteinen HSC70, SGT, Syntaxin, Synaptobrevin/VAMP, verschiedenen Untereinheiten von G-Proteinen, Synaptotagmin, sowie spannungsabh{\"a}ngigen Ca2+-Kan{\"a}len beschrieben. csp-Nullmutanten CspU1 von Drosophila melanogaster zeigen einen temperatursensitiven Ph{\"a}notyp, in dem adulte Fliegen von CspU1 reversibel bei 37°C innerhalb von drei Minuten paralysieren. An der neuromuskul{\"a}ren Synapse dritter Larven von CspU1 kann bei nicht-permissiver Temperatur von 32°C eine reversible Blockade der synaptischen Transmission beobachtet werden. In der vorliegenden Arbeit sollten mit Hilfe des larvalen Nerv-Muskel-Pr{\"a}parats dritter Larven elektrophysiologische Untersuchungen an verschiedenen csp-Mutanten durchgef{\"u}hrt werden. Hierdurch sollte die Bedeutung der einzelnen Dom{\"a}nen f{\"u}r die Funktion von csp weiter aufgekl{\"a}rt werden. Am larvalen Nerv-Muskel-Pr{\"a}parat von Drosophila ist eine Arbeit auf Einzel-Zell-Niveau m{\"o}glich. Die Segmentierung, die wiederkehrende Anordnung von Muskeln und innervierenden Motoneuronen, sowie das Vorkommen vieler auch im Gehirn von Drosophila lokalisierter synaptischer Proteine machen die larvale neuromuskul{\"a}re Synapse f{\"u}r die vorliegenden Fragestellungen. Wie in vielen anderen Arbeiten, wurden elektrophysiologische Messungen an dem Longitudinalmuskel 6 durchgef{\"u}hrt. Alle Messungen evozierter Muskelpotentiale (EJP) wurden, wenn nicht anders erw{\"a}hnt, mit 0,2Hz Stimulusfrequenz durchgef{\"u}hrt. Die Reiz-Intensit{\"a}t wurde an jedes Pr{\"a}parat individuell angepasst und betrug das 2 ½ -fache des Initial-Schwellenwertes, bei dem ein vollst{\"a}ndiges EJP ausgel{\"o}st wurde. Zun{\"a}chst konnte der in der Literatur beschriebene larvale Block der synaptischen Transmitteraussch{\"u}ttung bei erh{\"o}hter Temperatur nicht reproduziert, jedoch durch R{\"u}ckkreuzungen der Nullmutante CspU1 gegen den Wildtyp w1118 wiederhergestellt werden. Das „Rescue"-Konstrukt scDNA1, welches die Grundlage f{\"u}r alle weiteren mutierten Formen von csp darstellt, rettete den larvalen temperatursensitiven Ph{\"a}notyp im csp-Nullmutantenhintergrund von CspU1 vollst{\"a}ndig. Larvale Mutanten der Linie SSP, bei denen der Cystein String durch einen Serin String ausgetauscht worden war (Serine-string protein), zeigten in {\"U}bereinstimmung mit den adulten Fliegen den bekannten temperatursensitiven Ph{\"a}notyp. Larvale Mutanten der Linie CLP (Cysteine-less protein) zeigten im Gegensatz zu adulten Tieren dieser Linie keinen temperatursensitiven Ph{\"a}notyp, sondern ein wildtypisches Verhalten. F{\"u}r die Mutante L\&\#8710;8, die im Nullmutantenhintergrund von CspU1 roc ein in der Linker-Dom{\"a}ne um acht Aminos{\"a}uren verk{\"u}rztes CSP-Protein exprimiert, wurden verschiedene elektrophysiologische Ph{\"a}notypen beobachtet: Larven der X-chromosomalen Linie zeigten den bekannten temperaturabh{\"a}ngigen Block der synaptischen Transmission. Larven der Insertionslinie f{\"u}r das 3. Chromosom zeigten keine Temperatursensitivit{\"a}t, sondern wildtypisches Verhalten. In immunhistochemischen Untersuchungen konnte f{\"u}r die X-chromosomale Linie eine deutlich schw{\"a}chere Expression des L\&\#8710;8-Proteins beobachtet werden. Larven der Linie C\&\#8710;27, die ein im C-terminalen Bereich von CSP um 27 Aminos{\"a}uren verk{\"u}rztes CSP-Protein exprimieren, im Nullmutantenhintergrund CspU1 roc konnten anhand des Ph{\"a}notyps in zwei Gruppen unterteilt werden. Unabh{\"a}ngig vom Insertionsort zeigte eine Gruppe den bekannten larvalen temperatursensitiven Ph{\"a}notyp. Die zweite Gruppe zeigte auch bei erh{\"o}hter Temperatur wildtypisches Verhalten. Im zweiten Teil der Arbeit wurde versucht, eine neue Deletionsmutante f{\"u}r csp durch Remobilisierung einer P-Insertion (P\#1617, flybase, Bloomington) im ersten Exon zu erzeugen, da in der Nullmutante CspU1 m{\"o}glicherweise auch benachbarte Gene betroffen sind. Nach {\"U}berpr{\"u}fung der erzeugten Mutanten durch Western und Southern Blot, immunhistochemische Experimente und elektrophysiologische Untersuchungen am Nerv-Muskel-Pr{\"a}parat 3. Larven konnte keine Deletionsmutante mit temperaturabh{\"a}ngigem Ph{\"a}notyp isoliert werden, die ausschließlich csp betraf.}, subject = {Taufliege}, language = {de} } @phdthesis{Ljaschenko2013, author = {Ljaschenko, Dmitrij}, title = {Hebbian plasticity at neuromuscular synapses of Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-90465}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Synaptic plasticity determines the development of functional neural circuits. It is widely accepted as the mechanism behind learning and memory. Among different forms of synaptic plasticity, Hebbian plasticity describes an activity-induced change in synaptic strength, caused by correlated pre- and postsynaptic activity. Additionally, Hebbian plasticity is characterised by input specificity, which means it takes place only at synapses, which participate in activity. Because of its correlative nature, Hebbian plasticity suggests itself as a mechanism behind associative learning. Although it is commonly assumed that synaptic plasticity is closely linked to synaptic activity during development, the mechanistic understanding of this coupling is far from complete. In the present study channelrhodopsin-2 was used to evoke activity in vivo, at the glutamatergic Drosophila neuromuscular junction. Remarkably, correlated pre- and postsynaptic stimulation led to increased incorporation of GluR-IIA-type glutamate receptors into postsynaptic receptor fields, thus boosting postsynaptic sensitivity. This phenomenon is input-specific. Conversely, GluR-IIA was rapidly removed from synapses at which neurotransmitter release failed to evoke substantial postsynaptic depolarisation. This mechanism might be responsible to tame uncontrolled receptor field growth. Combining these results with developmental GluR-IIA dynamics leads to a comprehensive physiological concept, where Hebbian plasticity guides growth of postsynaptic receptor fields and sparse transmitter release stabilises receptor fields by preventing overgrowth. Additionally, a novel mechanism of retrograde signaling was discovered, where direct postsynaptic channelrhodopsin-2 based stimulation, without involvement of presynaptic neurotransmitter release, leads to presynaptic depression. This phenomenon is reminiscent of a known retrograde homeostatic mechanism, of inverted polarity, where neurotransmitter release is upregulated, upon reduction of postsynaptic sensitivity.}, subject = {Synapse}, language = {en} } @phdthesis{LuiblneeHermann2014, author = {Luibl [n{\´e}e Hermann], Christiane}, title = {The role of the neuropeptides NPF, sNPF, ITP and PDF in the circadian clock of Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93796}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Organisms have evolved endogenous clocks which allow them to organize their behavior, metabolism and physiology according to the periodically changing environmental conditions on earth. Biological rhythms that are synchronized to daily changes in environment are governed by the so-called circadian clock. Since decades, chronobiologists have been investigating circadian clocks in various model organisms including the fruitfly Drosophila melanogaster, which was used in the present thesis. Anatomically, the circadian clock of the fruitfly consists of about 150 neurons in the lateral and dorsal protocerebrum, which are characterized by their position, morphology and neurochemistry. Some of these neurons had been previously shown to contain either one or several neuropeptides, which are thought to be the main signaling molecules used by the clock. The best investigated of these neuropeptides is the Pigment Dispersing Factor (PDF), which had been shown to constitute a synchronizing signal between clock neurons as well as an output factor of the clock. In collaboration with various coworkers, I investigated the roles of three other clock expressed neuropeptides for the generation of behavioral rhythms and the partly published, partly unpublished data are presented in this thesis. Thereby, I focused on the Neuropeptide F (NPF), short Neuropeptide F (sNPF) and the Ion Transport Peptide (ITP). We show that part of the neuropeptide composition within the clock network seems to be conserved among different Drosophila species. However, the PDF expression pattern in certain neurons varied in species deriving from lower latitudes compared to higher latitudes. Together with findings on the behavioral level provided by other people, these data suggest that different species may have altered certain properties of their clocks - like the neuropeptide expression in certain neurons - in order to adapt their behavior to different habitats. We then investigated locomotor rhythms in Drosophila melanogaster flies, in which neuropeptide circuits were genetically manipulated either by cell ablation or RNA interference (RNAi). We found that none of the investigated neuropeptides seems to be of equal importance for circadian locomotor rhythms as PDF. PDF had been previously shown to be necessary for rhythm maintenance in constant darkness (DD) as well as for the generation of morning (M) activity and for the right phasing of the evening (E) activity in entrained conditions. We now demonstrate that NPF and ITP seem to promote E activity in entrained conditions, but are clearly not the only factors doing so. In addition, ITP seems to reduce nighttime activity. Further, ITP and possibly also sNPF constitute weak period shortening components in DD, thereby opposing the effect of PDF. However, neither NPF or ITP, nor sNPF seem to be necessary in the clock neurons for maintaining rhythmicity in DD. It had been previously suggested that PDF is released rhythmically from the dorsal projection terminals. Now we discovered a rhythm in ITP immunostaining in the dorsal projection terminals of the ITP+ clock neurons in LD, suggesting a rhythm in peptide release also in the case of ITP. Rhythmic release of both ITP and PDF seems to be important to maintain rhythmic behavior in DD, since constantly high levels of PDF and ITP in the dorsal protocerebrum lead to behavioral arrhythmicity. Applying live-imaging techniques we further demonstrate that sNPF acts in an inhibitory way on few clock neurons, including some that are also activated by PDF, suggesting that it acts as signaling molecule within the clock network and has opposing effects to PDF. NPF did only evoke very little inhibitory responses in very few clock neurons, suggesting that it might rather be used as a clock output factor. We were not able to apply the same live-imaging approach for the investigation of the clock neuron responsiveness to ITP, but overexpression of ITP with various driver lines showed that the peptide most likely acts mainly in clock output pathways rather than inter-clock neuron communication. Taking together, I conclude that all investigated peptides contribute to the control of locomotor rhythms in the fruitfly Drosophila melanogaster. However, this control is in most aspects dominated by the actions of PDF and rather only fine-tuned or complemented by the other peptides. I assume that there is a high complexity in spatial and temporal action of the different neuropeptides in order to ensure correct signal processing within the clock network as well as clock output.}, subject = {Taufliege}, language = {en} } @phdthesis{Masek2005, author = {Masek, Pavel}, title = {Odor intensity learning in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15546}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {It has been known for a long time that Drosophila can learn to discriminate not only between different odorants but also between different concentrations of the same odor. Olfactory associative learning has been described as a pairing between odorant and electric shock and since then, most of the experiments conducted in this respect have largely neglected the dual properties of odors: quality and intensity. For odorant-coupled short-term memory, a biochemical model has been proposed that mainly relies on the known cAMP signaling pathway. Mushroom bodies (MB) have been shown to be necessary and sufficient for this type of memory, and the MB-model of odor learning and short-term memory was established. Yet, theoretically, based on the MB-model, flies should not be able to learn concentrations if trained to the lower of the two concentrations in the test. In this thesis, I investigate the role of concentration-dependent learning, establishment of a concentration-dependent memory and their correlation to the standard two-odor learning as described by the MB-model. In order to highlight the difference between learning of quality and learning of intensity of the same odor I have tried to characterize the nature of the stimulus that is actually learned by the flies, leading to the conclusion that during the training flies learn all possible cues that are presented at the time. The type of the following test seems to govern the usage of the information available. This revealed a distinction between what flies learned and what is actually measured. Furthermore, I have shown that learning of concentration is associative and that it is symmetrical between high and low concentrations. I have also shown how the subjective quality perception of an odor changes with changing intensity, suggesting that one odor can have more than one scent. There is no proof that flies perceive a range of concentrations of one odorant as one (odor) quality. Flies display a certain level of concentration invariance that is limited and related to the particular concentration. Learning of concentration is relevant only to a limited range of concentrations within the boundaries of concentration invariance. Moreover, under certain conditions, two chemically distinct odorants could smell sufficiently similarly such, that they can be generalized between each other like if they would be of the same quality. Therefore, the abilities of the fly to identify the difference in quality or in intensity of the stimuli need to be distinguished. The way how the stimulus is analyzed and processed speaks in favor of a concept postulating the existence of two separated memories. To follow this concept, I have proposed a new form of memory called odor intensity memory (OIM), characterized it and compared it to other olfactory memories. OIM is independent of some members of the known cAMP signaling pathway and very likely forms the rutabaga-independent component of the standard two-odor memory. The rutabaga-dependent odor memory requires qualitatively different olfactory stimuli. OIM is revealed within the limits of concentration invariance where the memory test gives only sub-optimal performance for the concentration differences but discrimination of odor quality is not possible at all. Based on the available experimental tools, OIM seems to require the mushroom bodies the same as odor-quality memory but its properties are different. Flies can memorize the quality of several odorants at a given time but a newly formed memory of one odor interferes with the OIM stored before. In addition, the OIM lasts only 1 to 3 hours - much shorter than the odor-quality memory.}, subject = {Taufliege}, language = {en} } @phdthesis{Melzer2013, author = {Melzer, Juliane}, title = {Die Funktion der p21-aktivierten Kinase Mbt in Neuroblasten w{\"a}hrend der Entwicklung des zentralen Nervensystems von Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85619}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {p21-aktivierte Kinasen regulieren zahlreiche zellul{\"a}re Prozesse, die w{\"a}hrend der Entwicklung, aber auch beispielsweise bei der Krebsentstehung, von zentraler Bedeutung sind. Mbt, das einzige Typ II PAK-Protein von Drosophila melanogaster, spielt eine Rolle bei der Gehirnentwicklung. Eine Nullmutation von mbt, mbtP1, bildet kleinere Gehirne mit stark verkleinerten Pilzk{\"o}rpern aus. In dieser Arbeit wurde die Funktion von Mbt in Neuroblasten untersucht. Mbt wurde als Teil des apikalen Proteinkomplexes in Neuroblasten des Zentralhirns nachgewiesen. Die apikale Lokalisation von Mbt ist Zellzyklus-abh{\"a}ngig und wird {\"u}ber Bindung an Cdc42 reguliert. Sie ist essentiell f{\"u}r die Funktion von Mbt in Neuroblasten. Trotz apikaler Mbt-Lokalisation in Neuroblasten zeigte die mbt Nullmutante keine Defekte des basalen Mechanismus der asymmetrischen Zellteilung. Mud zeigte geringf{\"u}gige Lokalisationsver{\"a}nderungen, die auf einen m{\"o}glichen Einfluss von Mbt hinweisen. Obwohl PAKs zentrale Regulatoren des Zytoskeletts sind, zeigte die mbtP1 Mutante keine offensichtlichen Ver{\"a}nderungen des Aktin- und Tubulin-Zytoskeletts. Armadillo, ein Aktin-assoziiertes Mbt-Substrat, zeigte ebenfalls keine Lokalisationsver{\"a}nderung in Neuroblasten. Mbt steuert jedoch die apikale Anreicherung von Cno, einem weiteren Aktin-assoziierten Protein, in Neuroblasten. Dar{\"u}ber hinaus beeinflusst Mbt die Zellgr{\"o}ße von Neuroblasten, sowie deren Proliferationspotenzial und {\"U}berleben. mbtP1 Neuroblasten sind kleiner als wildtypische Neuroblasten, haben ein geringeres Proliferationsverm{\"o}gen und eine geringere {\"U}berlebenswahrscheinlichkeit. Der Zelltod von Neuroblasten ist jedoch ein sekund{\"a}rer Effekt. Daher kann eine Blockierung von Apoptose den adulten Pilzk{\"o}rperph{\"a}notyp nicht retten. Signalwege, die Zellgr{\"o}ße und Proliferation regulieren, wurden auf eine Beteiligung von Mbt hin analysiert. mbtP1 induzierte leichte Effekte im Insulin-Signalweg und die Delokalisation eines nukleol{\"a}ren Proteins. Eine genetische Interaktion von mbtP1 mit Mutationen in Genen des klassischen MAPK-Signalweges identifzierte mbt als Positivregulator dieses Signalweges im Auge. Ein {\"a}hnlicher, schw{\"a}cherer Effekt wurde auch bzgl. der Proliferation und Gr{\"o}ße von Neuroblasten beobachtet. Eine 2D-Gelanalyse von Larvengehirnen identifizierte Bic und Hsp83 als m{\"o}gliche von Mbt regulierte Proteine. Diese Arbeit charakterisiert eine bisher unbekannte Funktion der p21-aktivierten Kinase Mbt in neuronalen Stammzellen und liefert damit Ansatzpunkte f{\"u}r eine detaillierte Aufkl{\"a}rung der Funktionsmechanismen von Typ II PAKs bei der Regulation von Zellproliferation und {\"U}berleben}, subject = {Taufliege}, language = {de} } @phdthesis{Mentzel2008, author = {Mentzel, Benjamin Tobias}, title = {Biochemische und ph{\"a}notypische Untersuchungen zur Funktion der p21-aktivierten Kinase DPAK3 in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30290}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Gegenstand dieser Arbeit ist das Drosophila melanogaster Protein DPAK3, ein Vertreter der hochkonservierten Familie der p21-aktivierten Kinasen (PAK). DPAK3 und seine Homologen aus anderen Insektenarten und C. elegans k{\"o}nnen aufgrund eines Vergleichs der Proteinsequenz und struktureller Merkmale in eine eigenen Untergruppe 1* innerhalb der Gruppe 1 der PAK-Proteine eingeordnet werden. Das Genom von Drosophila kodiert noch f{\"u}r zwei weitere PAK-Proteine, das zur Gruppe 1 geh{\"o}rende DPAK1 und das Gruppe 2 PAK-Protein Mbt. Wie die klassischen Gruppe 1 PAK-Proteine bildet DPAK3 im inaktiven Zustand Dimere. DPAK3 interagiert mit den GTP-gebundenen Formen der RhoGTPasen Rac1, Rac2 und Cdc42. Durch die Bindung dieser Proteine geht DPAK3 aus dem dimeren in den monomeren Zustand {\"u}ber und seine Kinaseaktivit{\"a}t wird durch diese Bindung gesteigert. DPAK3 ist f{\"u}r die Ausbildung der korrekten Morphologie kultivierter Drosophila Zellen erforderlich und beeinflußt die Regulation des Aktinzytoskeletts. Weiterhin konnte CK2beta, die regulatorische Untereinheit der Casein Kinase 2, als neuer Regulator von p21-aktivierten Kinasen identifiziert werden. Das Genom von Drosophila besitzt drei Transkriptionseinheiten, die f{\"u}r CK2beta', CK2betatestes und f{\"u}nf verschiedene Isoformen von CK2beta kodieren. Eine vergleichende Analyse zeigt, daß alle CK2beta-Proteine mit DPAK1, DPAK3 und in geringerem Maß auch mit Mbt interagieren und in der Lage sind, die Aktivit{\"a}t der PAK-Proteine in vitro zu hemmen. Die Bindung von CK2beta an DPAK3 wird, wie bei allen anderen Serin- / Threoninkinasen, die bisher als Interaktionspartner von CK2beta identifiziert wurden, {\"u}ber die Kinasedom{\"a}ne von DPAK3 vermittelt. Die Bildung des aus zwei katalytischen CK2a und zwei CK2beta Untereinheiten bestehenden CK2-Holoenzyms h{\"a}ngt von der F{\"a}higkeit von CK2beta ab, Dimere zu bilden. Es konnte gezeigt werden, daß die Bildung eines b-b Dimers f{\"u}r die Interaktion mit und Regulation von DPAK3 nicht erforderlich ist. In vivo wurden die bisher bekannten Dpak3 Allele untersucht, wobei kein gesichertes Nullallel identifiziert werden konnte. Durch enzymatisch katalysierte Rekombination wurde eine neue Deletion hergestellt, die das komplette Leseraster von Dpak3 entfernt. Mit Hilfe von genetischen Mosaiken wurde die Rolle von DPAK3 in der Augenentwicklung untersucht. Durch den Verlust der Genfunktion von Dpak3 wird die Ausbildung der korrekten Struktur der Komplexaugen nur leicht beeintr{\"a}chtigt. Bei der Analyse einer Dpak1 Mutante wurde dasselbe Ergebnis erzielt. Gleichzeitiger Verlust der Genfunktion von Dpak1 und Dpak3 hingegen f{\"u}hrt zu massiven strukturellen Defekten. DPAK1 und DPAK3 erf{\"u}llen somit zumindest teilweise redundante Funktionen in der Augenentwicklung. Es wird Gegenstand zuk{\"u}nftiger Studien sein m{\"u}ssen, die gemeinsamen und getrennten Funktionen dieser PAK-Proteine in Drosophila aufzukl{\"a}ren.}, subject = {Taufliege}, language = {de} } @phdthesis{Michels2008, author = {Michels, Birgit}, title = {Towards localizing the Synapsin-dependent olfactory memory trace in the brain of larval Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36338}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Animals need to adapt and modify their behaviour according to a changing environment. In particular, the ability to learn about rewarding or punishing events is crucial for survival. One key process that underlies such learning are modifications of the synaptic connection between nerve cells. This Thesis is concerned with the genetic determinants of such plasticity, and with the site of these modifications along the sensory-to-motor loops in Drosophila olfactory learning. I contributed to the development and detailed parametric description of an olfactory associative learning paradigm in larval fruit flies (Chapter I.1.). The robustness of this learning assay, together with a set of transgenic Drosophila strains established during this Thesis, enabled me to study the role for Synapsin, a presynaptic phosphoprotein likely involved in synaptic plasticity, in this form of learning (Chapter I.2.), and to investigate the cellular site of the corresponding Synapsin-dependent memory trace (Chapter I.3.). These data provide the first comprehensive account to-date of the neurogenetic bases of learning in larval Drosophila. The role for Synapsin was also analyzed with regard to pain-relief learning in adult fruit flies (Chapter II.1.); that is, if an odour precedes an electric shock during training, flies subsequently avoid that odour ('punishment learning'), whereas presentation of the odour upon the cessation of shock subsequently leads to approach towards the odour ('relief larning'). Such pain-relief learning was also the central topic of a study concerning the white gene (Chapter II.2.), which as we report does affect pain-relief as well as punishment learning in adult flies, but leaves larval odour-food learning unaffected. These studies regarding pain-relief learning provide the very first hints, in any experimental system, concerning the genetic determinants of this form of learning.}, subject = {Taufliege}, language = {en} } @phdthesis{Mrestani2022, author = {Mrestani, Achmed}, title = {Strukturelle Differenzierung und Plastizit{\"a}t pr{\"a}synaptischer Aktiver Zonen}, doi = {10.25972/OPUS-23578}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235787}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Ziel der vorliegenden Arbeit war die nanoskopische Analyse struktureller Differenzierung und Plastizit{\"a}t pr{\"a}synaptischer aktiver Zonen (AZs) an der NMJ von Drosophila melanogaster mittels hochaufl{\"o}sender, lichtmikroskopischer Bildgebung von Bruchpilot (Brp). In erster Linie wurde das lokalisationsmikroskopische Verfahren dSTORM angewendet. Es wurden neue Analyse-Algorithmen auf der Basis von HDBSCAN entwickelt, um eine objektive, in weiten Teilen automatisierte Quantifizierung bis auf Ebene der Substruktur der AZ zu erm{\"o}glichen. Die Differenzierung wurde am Beispiel phasischer und tonischer Synapsen, die an dieser NMJ durch Is- und Ib-Neurone gebildet werden, untersucht. Phasische Is-Synapsen mit hoher Freisetzungswahrscheinlichkeit zeigten kleinere, kompaktere AZs mit weniger Molek{\"u}len und h{\"o}herer molekularer Dichte mit ebenfalls kleineren, kompakteren Brp-Subclustern. Akute strukturelle Plastizit{\"a}t wurde am Beispiel pr{\"a}synaptischer Hom{\"o}ostase, bei der es zu einer kompensatorisch erh{\"o}hten Neurotransmitterfreisetzung kommt, analysiert. Interessanterweise zeigte sich hier ebenfalls eine kompaktere Konfiguration der AZ, die sich auch auf Ebene der Subcluster widerspiegelte, ohne Rekrutierung von Molek{\"u}len. Es konnte demonstriert werden, dass sich eine h{\"o}here Molek{\"u}ldichte in der Lokalisationsmikroskopie in eine h{\"o}here Intensit{\"a}t und gr{\"o}ßere Fl{\"a}che in der konfokalen Mikroskopie {\"u}bersetzt, und damit der Zusammenhang zu scheinbar gegens{\"a}tzlichen Vorbefunden hergestellt werden. Die Verdichtung bzw. Kompaktierung erscheint im Zusammenhang mit der Kopplungsdistanz zwischen VGCCs und pr{\"a}synaptischen Vesikeln als plausibles Muster der effizienten Anordnung molekularer Komponenten der AZ. Die hier eingef{\"u}hrten Analysewerkzeuge und molekularbiologischen Strategien, basierend auf dem CRISPR/Cas9-System, zur Markierung von AZ-Komponenten k{\"o}nnen zuk{\"u}nftig zur weiteren Kl{\"a}rung der Bedeutung der molekularen Verdichtung als allgemeines Konzept der AZ-Differenzierung beitragen.}, subject = {Synapse}, language = {de} } @phdthesis{Mronz2004, author = {Mronz, Markus}, title = {Die visuell motivierte Objektwahl laufender Taufliegen (Drosophila melanogaster) - Verhaltensphysiologie, Modellbildung und Implementierung in einem Roboter}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-11748}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Im Rahmen dieser Arbeit wurden offene Fragen zur Objektwahl, zur Objektbeibehaltung und zur Aufgabe von Zielobjekten bei laufenden Taufliegen (Drosophila melanogaster) untersucht. Die Erkenntnisse zur Objektwahl wurden als kybernetisches Modell formuliert, auf einem eigens daf{\"u}r konstruierten, autonom navigierenden Roboter mit Kameraauge implementiert und dessen Verhalten bei verschiedenen Landmarkenkonstellationen quantitativ mit dem Orientierungsverhalten laufender Fliegen verglichen. Es war bekannt, dass Drosophila in einer Wahlsituation zwischen unterschiedlich weit entfernten Objekten eine ausgepr{\"a}gte Pr{\"a}ferenz f{\"u}r nahe Objekte zeigt, wobei die Entfernung {\"u}ber das Ausmaß der retinalen Bildverschiebung auf dem Auge (Parallaxe) erfasst wird. In der vorliegenden Arbeit wurde analysiert, ob die Parallaxe streng aus der Eigenbewegung der Fliege resultieren muss oder ob Eigenbewegung der Objekte N{\"a}he vort{\"a}uschen und deren Attraktivit{\"a}t erh{\"o}hen kann. Es wurde gezeigt, dass die Pr{\"a}ferenz f{\"u}r ein Objekt bei Drosophila umso gr{\"o}ßer wird, je mehr Bewegung dessen Abbild auf der Retina erzeugt; die relative Verschiebung des Objektabbildes muss dabei nicht mit der Eigenbewegung der Fliege gekoppelt sein. {\"U}berraschenderweise verschwand die Pr{\"a}ferenz f{\"u}r nahe Objekte, wenn eine zusammenstehende Gruppe aus einer nahen und mehreren fernen Objekten pr{\"a}sentiert wurden, solange sie zusammen einen Sehwinkel von weniger als etwa 90° einnahmen. Diese Beobachtung ist konform mit einer Vorstellung, wonach Bewegung {\"u}ber gr{\"o}ßere Augenbereiche integriert und nicht einzelnen Objekten zugeordnet wird. Obwohl Drosophila bei gleichem Pr{\"a}sentationsort auf der Retina die gr{\"o}ßere parallaktische Bewegung bevorzugte, wurden bei gleicher Entfernung dennoch frontalere gegen{\"u}ber lateraleren Objekten bevorzugt. Es wird postuliert, dass der frontale und der caudale Sehbereich eine Verst{\"a}rkung erfahren, die die physikalisch bedingt geringere Parallaxe {\"u}berkompensiert. Laufende Fliegen reagieren verz{\"o}gert auf die Pr{\"a}sentation eines Objekts; dies wird im Sinne einer zeitlichen Bewegungsintegration interpretiert. Die darauf folgende Richtungs{\"a}nderung h{\"a}ngt vom Pr{\"a}sentationswinkel des Objektes ab. Erscheint das Objekt frontolateral, findet eine Hinwendung statt, erscheint es caudolateral, kommt es bevorzugt zur Abwendung. Eine weitere wichtige kognitive Leistung der Fliege ist das Aufgeben eines zuvor ausgew{\"a}hlten Ziels, wenn sich dieses Ziel w{\"a}hrend des Anlaufs als unerreichbar herausstellt. In der vorliegenden Arbeit wurde gezeigt, dass Fliegen mit stark reduzierten Pilzk{\"o}rpern erheblich mehr Zeit ben{\"o}tigen als wildtypische Fliegen, um vom gew{\"a}hlten Zielobjekt abzulassen. Dieser dem Perseveranzverhalten bei Parkinson-kranken Menschen {\"a}hnliche Ph{\"a}notyp wurde unabh{\"a}ngig von der Methode der Ausschaltung der Pilzk{\"o}rper gefunden. Die Dauer der Perseveranz nahm mit zunehmender Attraktivit{\"a}t des Zielobjekts, d. h. mit abnehmender Distanz, zu. Es wird vorgeschlagen, dass die Pilzk{\"o}rper f{\"u}r die Evaluierung von eingehender sensorischer Information oder f{\"u}r Entscheidungsfindungen im Allgemeinen ben{\"o}tig werden. Basierend auf diesen Ergebnissen wurde ein Minimalmodell f{\"u}r die visuelle Orientierung nach Landmarken entwickelt. Das Modell beinhaltet eine zeitliche Integration des optischen Flusses in einem frontolateralen und einem caudolateralen Kompartiment pro Auge. Je nachdem, in welchem Kompartiment eine festgesetzte Schwelle zuerst erreicht wird, kommt es entweder zu einer Hin- (frontolateral) oder zu einer Abwendungsreaktion (caudolateral). Eine Gewichtungsfunktion kompensiert die geringe parallaktische Verschiebung in diesen Sehregionen. Das Modell wurde in einem mobilen Roboter mit Kameraauge implementiert und mit dem visuellen Orientierungsverhalten der Fliege quantitativ verglichen. Der Roboter war in der Lage, viele Aspekte der Landmarkenwahl von laufenden Fliegen erfolgreich zu reproduzieren und fliegen{\"a}hnliches, autonomes Orientierungsverhalten unter verschiedenen Landmarkenkonfigurationen zu zeigen.}, subject = {Taufliege}, language = {de} } @phdthesis{Niewalda2010, author = {Niewalda, Thomas}, title = {Neurogenetic analyses of pain-relief learning in the fruit fly}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65035}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {All animals learn in order to cope with challenges imposed on them by their environment. This is true also for both larval and adult fruit flies as exemplified in pavlovian conditioning. The focus of this Thesis is on various aspects of the fruit flies learning ability. My main project deals with two types of learning which we call punishment-learning and pain-relief learning. Punishment learning happens when fruit flies are exposed to an odour which is followed by electric shock. After such training, flies have learned that that odour signals pain and consequently will avoid it in the future. If the sequence of the two stimuli is reversed such that odour follows shock, flies learn the odour as a signal for relief and will later on approach it. I first report a series of experiments investigating qualitative and parametric features of relief-learning; I find that (i) relief learning does result from true associative conditioning, (ii) it requires a relatively high number of training trials, (iii) context-shock training is ineffective for subsequent shock-odour learning. A further question is whether punishment-learning and pain-relief learning share genetic determinants. In terms of genetics, I test a synapsin mutant strain, which lacks all Synapsin protein, in punishment and relief-learning. Punishment learning is significantly reduced, and relief-learning is abolished. Pan-neuronal RNAi-mediated knock-down of Synapsin results in mutant-like phenotypes, confirming the attribution of the phenotype to lack of Synapsin. Also, a rescue of Synapsin in the mushroom body of syn97 mutants restores both punishment- and relief-learning fully, suggesting the sufficiency of Synapsin in the mushroom body for both these kinds of learning. I also elucidate the relationship between perception and physiology in adult fruit flies. I use odour-shock conditioning experiments to identify degrees of similarity between odours; I find that those similarity measures are consistent across generalization and discrimination tasks of diverse difficulty. Then, as collaborator of T. V{\"o}ller and A. Fiala, I investigate how such behavioural similarity/dissimilarity is reflected at the physiological level. I combine the behaviour data with calcium imaging data obtained by measuring the activity patterns of those odours in either the sensory neurons or the projection neurons at the antennal lobe. Our interpretation of the results is that the odours perceptual similarity is organized by antennal lobe interneurons. In another project I investigate the effect of gustatory stimuli on reflexive behaviour as well as their role as reinforcer in larval learning. Drosophila larvae greatly alter their behaviour in presence of sodium chloride. Increasing salt concentration modulates choice behaviour from weakly appetitive to strongly aversive. A similar concentration-behaviour function is also found for feeding: larval feeding is slightly enhanced in presence of low salt concentrations, and strongly decreased in the presence of high salt concentrations. Regarding learning, relatively weak salt concentrations function as appetitive reinforcer, whereas high salt concentrations function as aversive reinforcer. Interestingly, the behaviour-concentration curves are shifted towards higher concentrations from reflexive behaviour (choice behaviour, feeding) as compared to associative learning. This dissociation may reflect a different sensitivity in the respective sensory-motor circuitry.}, subject = {Taufliege}, language = {en} } @phdthesis{Nuwal2010, author = {Nuwal, Nidhi}, title = {Optogenetic investigation of nervous system functions using walking behavior and genome wide transcript analysis of Synapsin and Sap47 mutants of Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51694}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {PART I Animals need to constantly evaluate their external environment in order to survive. In some cases the internal state of the animal changes to cope with it's surrounding. In our study we wanted to investigate the role of amines in modulating internal states of Drosophila. We have designed a behavioral paradigm where the flies are fixed in space but can walk on a small styrofoam ball suspended by a gentle stream of air. The walking activity of flies was used as behavioral readout. PART I Animals need to constantly evaluate their external environment in order to survive. In some cases the internal state of the animal changes to cope with it's surrounding. In our study we wanted to investigate the role of amines in modulating internal states of Drosophila. We have designed a behavioral paradigm where the flies are fixed in space but can walk on a small styrofoam ball suspended by a gentle stream of air. The walking activity of flies was used as behavioral readout. An operant training paradigm was established by coupling one of the walking directions to incidence of heat punishment. We observed that animals quickly realized the contingency of punishment with walking direction and avoided walking in the punished direction in the presence of punishment, but did not continue walking in the unpunished direction in the absence of the punishment. This would indicate that the flies do not form a memory for the punished direction or rapidly erase it under new conditions. On having established the paradigm with heat punishment we have attempted to activate selected subsets of neuronal populations of Drosophila while they were walking on the ball. The selective activation of neurons was achieved by expressing the light-activated ion channel channelrhodopsin-2 (ChR2) using the Gal4-UAS system and coupling the unidirectional walking of the animals on the ball with the incidence of blue light required to activate the channels and depolarize the neurons. The feasibility of this approach was tested by light-activating sugar sensitive gustatory receptor neurons expressing ChR2, we found that when the light was actuated the flies preferred to turn in one direction the optically "rewarded" direction. Next we similarly activated different subsets of aminergic neurons. We observed that in our setup animals avoided to turn in the direction which was coupled to activation of dopaminergic neurons indicating that release of dopamine is disliked by the animals. This is in accordance with associative learning experiments where dopamine is believed to underlie the formation of an association between a neutral conditioned stimulus with the aversive unconditioned stimulus. However, when we activated tyraminergic/octopaminergic neurons we did not observe any directional preference. The activation of dopaminergic and tyraminergic/octopaminergic neurons led to arousal of the animals indicating that we were indeed successful in activating those neurons. Also, the activation of serotonergic neurons did not have any effect on directional preference of the animals. With this newly established paradigm it will be interesting to find out if in insects like in mammals a reward mediating system exists and to test subsets of aminergic or peptidergic neurons that could possibly be involved in a reward signaling system which has not been detected in our study. Also, it would be interesting to localize neuropile regions that would be involved in mediating choice behavior in our paradigm. PART II In collaboration with S. Kneitz (IZKF Wuerzburg) and T. Nuwal we performed genome-wide expression analysis of two pre-synaptic mutants - Synapsin (Syn97) and Synapse associated protein of 47 kDa (Sap47156). The rationale behind these experiments was to identify genes that were up- or down-regulated due to these mutations. The microarray experiments provided us with several candidate genes some of which we have verified by qPCR. From our qPCR analysis we can conclude that out of the verified genes only Cirl transcripts seem to be reproducibly down regulated in Synapsin mutants. The Cirl gene codes for a calcium independent receptor for latrotoxin. Further qPCR experiments need to be performed to verify other candidate genes. The molecular interactions between CIRL and SYN or their genes should now be investigated in detail.}, subject = {Taufliege}, language = {en} } @phdthesis{Nuwal2010, author = {Nuwal, Tulip}, title = {Characterization of Synapsin, Tubulin-Binding Chaperone E-like, And Their Putative Interactions With Synapse Associated Protein Of 47 kDa In Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51683}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In this thesis we have used Drosophila melanogaster as a model organism to investigate proteins and their putative interacting partners that are directly or indirectly involved in the release of neurotransmitters at the synapse. We have used molecular techniques to investigate conserved synaptic proteins, synapsin and synapse associated protein of 47 kD (SAP47), and a putative interaction partner of SAP47, tubulin binding chaperone E-like (TBCEL). SAP47 and synapsins are highly conserved synaptic vesicle associated proteins in Drosophila melanogaster. To further investigate the role and function of Sap47 and Syn genes, we had earlier generated the null mutants by P-element mutagenesis (Funk et al., 2004; Godenschwege et al., 2004). Western blots and ELISA of brain homogenates from Sap47156 null mutants showed the presence of up-regulated phospho-synapsin in comparison to wild-type (CS) and the presence of up-regulated phospho-synapsin was partially abolished when a pan-neuronal rescue of SAP47 was performed by the Gal4- UAS technique. Thus, the results suggest a qualitative and quantitative modulation of synapsin by SAP47. At the transcript level, we did not observe any difference in content of Syn transcript in Sap47156 and wild-type CS flies. The question of a direct molecular interaction between SAP47 and synapsin was investigated by co-immunoprecipitation (Co-IP) experiments and we did not find any stable interactions under the several IP conditions we tested. The possibility of Sap47 as a modifier of Syn at the genetic level was investigated by generating and testing homozygous double null mutants of Sap47 and Syn. The Syn97, Sap47156 double mutants are viable but have a reduced life span and decreased locomotion when compared to CS. In 2D-PAGE analysis of synapsins we identified trains of spots corresponding to synapsins, suggesting that synapsin has several isoforms and each one of them is posttranslationally modified. In an analysis by Blue native-SDS-PAGE (BN-SDS-2D- PAGE) and Western blot we observed synapsin and SAP47 signals to be present at 700-900 kDa and 200-250 kDa, respectively, suggesting that they are part of large but different complexes. We also report the possibility of Drosophila synapsin forming homo- and heteromultimers, which has also been reported for synapsins of vertebrates. In parallel to the above experiments, phosphorylation of synapsins in Drosophila was studied by IP techniques followed by 1D-SDS gel electrophoresis and mass spectrometry (in collaboration with S. Heo and G. Lubec). We identified and verified 5 unique phosphorylation sites in Drosophila synapsin from our MS analysis. Apart from phosphorylation modifications we identified several other PTMs which have not been verified. The significance of these phosphorylations and other identified PTMs needs to be investigated further and their implications for synapsin function and Drosophila behavior has to be elucidated by further experiments. In a collaborative project with S. Kneitz and N. Nuwal, we investigated the effects of Sap156 and Syn97 mutations by performing a whole Drosophila transcriptome microarray analysis of the individual null mutants and the double mutants (V2 and V3). We obtained several candidates which were significantly altered in the mutants. These genes need to be investigated further to elucidate their interactions with Sap47 and Syn. In another project, we investigated the role and function of Drosophila tubulin- binding chaperone E-like (Tbcel, CG12214). The TBCEL protein has high homology to vertebrate TBCE-like (or E-like) which has high sequence similarity to tubulin-binding chaperone E (TBCE) (hence the name TBCE-Like). We generated an anti-TBCEL polyclonal antiserum (in collaboration with G. Krohne). According to flybase, the Tbcel gene has only one exon and codes for two different transcripts by alternative transcription start sites. The longer transcript RB is present only in males whereas the shorter transcript RA is present only in females. In order to study the gene function we performed P- element jump-out mutagenesis to generate deletion mutants. We used the NP4786 (NP) stock which has a P(GawB) insertion in the 5' UTR of the Tbcel gene. NP4786 flies are homozygous lethal due to a second-site lethality as the flies are viable over a deficiency (Df) chromosome (a deletion of genomic region spanning the Tbcel gene and other upstream and downstream genes). We performed the P-element mutagenesis twice. In the first trial we obtained only revertants and the second experiment is still in progress. In the second attempt, jump-out was performed over the deficiency chromosome to prevent homologous chromosome mediated double stranded DNA repair. During the second mutagenesis an insertion stock G18151 became available. These flies had a P-element insertion in the open reading frame (ORF) of the Tbcel gene but was homozygous viable. Western blots of fresh tissue homogenates of NP/Df and G18151 flies probed with anti-TBCEL antiserum showed no TBCEL signal, suggesting that these flies are Tbcel null mutants. We used these flies for further immunohistochemical analyses and found that TBCEL is specifically expressed in the cytoplasm of cyst cells of the testes and is associated with the tubulin of spermatid tails in wild-type CS, whereas in NP/Df and G18151 flies the TBCEL staining in the cyst cells was absent and there was a disruption of actin investment cones. We also found enrichment of TBCEL staining around the actin investment cone. These results are also supported by the observation that the enhancer trap expression of the NP4786 line is localised to the cyst cells, similar to TBCEL expression. Also, male fertility of NP/Df and G18151 flies was tested and they were found to be sterile with few escapers. Thus, these results suggest that TBCEL is involved in Drosophila spermatogenesis with a possible role in the spermatid elongation and individualisation process.}, subject = {Taufliege}, language = {en} } @phdthesis{Otto2001, author = {Otto, Ines Maria}, title = {Klonierung und funktionelle Analyse des Aktinreorganisators p150-Spir}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1178402}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Die c-Jun-N-terminale Kinase (JNK), ein Mitglied der Familie der MAP-Kinasen (Mi-togen Activated Protein Kinases), wirkt als signal{\"u}bertragender Effektor, der den klei-nen GTPasen der Rho-Familie Rac und Cdc42 nachgeschaltet ist. Rho-GTPasen spielen eine Schl{\"u}sselrolle in der Regulation von zellul{\"a}ren Aktinstrukturen und steuern Prozesse in der Zelle, die {\"A}nderungen der Aktinstruktur erfordern, wie z.B. {\"A}nderungen der Zellmorphologie, Zellmigration, Wachstum und Differenzierung. Genetische Studien an der Fruchtfliege Drosophila melanogaster konnten eine Rolle des Drosophila-JNK-Homologs DJNK(basket) in der Regulation von Zellbewegungen und Zellmorphologie{\"a}nderungen w{\"a}hrend der Drosophila-Embryogenese zeigen. Inhibierung der Funktion von DJNK auf allen Stufen der DJNK-Signaltransduktions-kaskade f{\"u}hrt zum sogenannten dorsal closure-Ph{\"a}notyp der Embryonen mit fehlender Zellstreckung und fehlender Migration dorsaler Epithelzellen. Der molekulare Mechanismus, mit dessen Hilfe Rho-GTPasen Aktinstrukturen regu-lieren und wie JNK Einfluss auf Zellmorphologie und Zellbewegung nimmt, ist bisher nicht bekannt. Die Identifizierung neuer, mit JNK interagierender Proteine k{\"o}nnte zum besseren Verst{\"a}ndnis der Funktion und Regulation von JNK f{\"u}hren. In dieser Arbeit wurde ein Yeast-Two-Hybrid-Screen mit dem Drosophila-Homolog DJNK/basket durchgef{\"u}hrt, der zur Entdeckung des Drosophila-Proteins p150-Spir als Interaktionspartner von DJNK f{\"u}hrte. Der C-terminus des p150-Spir-Proteins enth{\"a}lt eine JNK-Interaktionsdom{\"a}ne, ein DEJL-Motiv (Docking Site for Erk and JNK, LxL) und wird von aktivierten JNK-Proteinkinasen phosphoryliert. p150-Spir ist ein Multi-Dom{\"a}nen-Protein, das in seiner aminoterminalen H{\"a}lfte eine Aufeinanderfolge von vier WH2-Dom{\"a}nen (Wiskott Aldrich Homology Domain 2) enth{\"a}lt. WH2-Dom{\"a}nen binden monomeres Aktin, Proteine mit WH2 Dom{\"a}nen, wie z.B. WASP oder WAVE sind Aktinreorganisatoren. Die transiente {\"U}berexpression von p150-Spir in NIH3T3-Mausfibroblasten f{\"u}hrt ebenfalls zu einer Aktinreorganisation. Eine weitere Dom{\"a}ne in p150-Spir ist eine modifizierte FYVE-Zinkfinger-Struktur (mFYVE) im zentralen Bereich des Proteins, die f{\"u}r die subzellul{\"a}re Lokalisation von p150-Spir von Bedeutung ist. Mutationen, welche die Zinkfingerstruktur zerst{\"o}ren, f{\"u}hren bei {\"U}berexpression in NIH3T3-Zellen zu einer zytoplasmatischen Lokalisation der mutierten p150-Spir-Proteine, w{\"a}hrend Wildtyp-p150-Spir perinukle{\"a}r akkumuliert. Spir-Proteine sind evolution{\"a}r hoch konserviert. Es konnten Spir-{\"a}hnliche Sequenzen auf den humanen Chromosomen 16 und 18, in der Maus und in der Seescheide Ciona savignyi gefunden werden. Der h{\"o}chste Grad an Konservierung besteht im Bereich der funktionellen Proteindom{\"a}nen. Ein in allen Spir-Proteinen ent-haltenes, als Spir-Box bezeichnetes hoch konserviertes Sequenzmotiv befindet sich unmittelbar vor dem mFYVE-Zinkfinger. Die Spir-Box zeigt Strukturverwandschaft zur Rab-GTPase-Bindungsregion in Rabphilin 3A, einem Protein, das ebenfalls eine FYVE-Dom{\"a}ne besitzt. Rab-GTPasen sind wie FYVE-Dom{\"a}nenproteine in die Regulation zellul{\"a}rer Vesikeltransportprozesse involviert. Das Vorhandensein beider Do-m{\"a}nen in p150-Spir deutet auf eine Rolle des Proteins in zellul{\"a}ren Transportprozes-sen hin. Ein denkbares Modell w{\"a}re, daß p150-Spir unter der Kontrolle von JNK-Signalen zellul{\"a}re Aktinstrukturen reguliert, die f{\"u}r Transportprozessse in der Zelle von Bedeutung sind; p150-Spir fungiert damit m{\"o}glicherweise als direktes Bindeglied zwischen MAPK-Signaltransduktionskaskaden und dem Aktinzytoskelett.}, subject = {Taufliege}, language = {de} } @phdthesis{Pick2004, author = {Pick, Simon}, title = {Kinematik und visuelle Steuerung des Kletterverhaltens und der Beinplatzierung der Fliege Drosophila melanogaster und {\"U}bertragung auf die Robotik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-12737}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Im Rahmen dieser Arbeit wurden visuelle Einfl{\"u}sse auf die Beinplatzierung beim Laufen und auf das Kletterverhalten der Fliege Drosophila melanogaster analysiert. W{\"a}hrend sich die Beinplatzierung als vorwiegend taktil gesteuert herausstellte, ist das Klettern sowohl bez{\"u}glich der Entscheidung zur Durchf{\"u}hrung (Motivationssteuerung) als auch bez{\"u}glich der Ausf{\"u}hrung selbst unter pr{\"a}ziser visueller Kontrolle. F{\"u}r die Untersuchungen wurde ein L{\"u}cken-{\"U}berwindungsparadigma entwickelt und die Kinematik des Kletterns {\"u}ber verschieden breite L{\"u}cken mit einer eigens entwickelten 3D-Hochgeschwindigkeits-Videoanlage erstmals quantitativ beschrieben. Drei wesentliche Verhaltensanpassungen sorgen daf{\"u}r, dass die Fliegen die maximal m{\"o}gliche Spannbreite ihrer Beine voll ausn{\"u}tzen und L{\"u}cken von bis zu 170\% der eigenen K{\"o}rperl{\"a}nge {\"u}berqueren k{\"o}nnen. Das Kletterverhalten wird abh{\"a}ngig von der L{\"u}ckenbreite initiiert und sinnlose Versuche an un{\"u}berwindbar breiten L{\"u}cken vermieden. Die visuelle L{\"u}ckenbreitenmessung wurde analysiert; sie beruht auf der Auswertung von Bewegungsparallaxe beim Anlauf. Einige Erkenntnisse aus der Laufforschung an Fliegen wurden auf einem im Rahmen dieser Arbeit modifizierten hexapoden Laufroboter umgesetzt und die Verbesserungen quantifiziert.}, subject = {Taufliege}, language = {de} } @phdthesis{Porps2008, author = {Porps, Patrick}, title = {Erh{\"o}hte Lebenserwartung und Resistenz gegen{\"u}ber oxidativem Stress in Maus-Prion-Protein (PrP)-exprimierenden Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36171}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {{\"U}bertragbare spongiforme Enzephalopathien (TSE) wie Scrapie beim Schaf, die bovine spongiforme Enzephalopathie (BSE) beim Rind oder die Creutzfeldt-Jakob-Krankheit (CJD) beim Menschen sind fortschreitende neurodegenerative Erkrankungen, die nach langer Inkubationszeit zum Tod f{\"u}hren. Die protein only-Hypothese besagt, dass das infekti{\"o}se Agens „Prion" teilweise oder vollst{\"a}ndig aus dem zellul{\"a}ren Prion-Protein (PrPC) besteht und nach Infektion des Organismus die Konversion von PrPC in die pathogene Isoform (PrPSc) verursacht. Die der Krankheit zugrunde liegenden neuropathologischen Mechanismen und die physiologische Funktion von PrPC sind bisher unbekannt. Es wurden jedoch eine neuroprotektive Funktion oder eine m{\"o}gliche Rolle im Zusammenhang mit der oxidativen Stress Hom{\"o}ostase postuliert. In dieser Arbeit wurden transgene Drosophila melanogaster-Linien als Modell zur Untersuchung der Funktion von PrPC etabliert. Unter Verwendung des Expressionssystems UAS/GAL4 exprimierten die Fliegen entweder wildtypisches PrP (wt-PrP) oder eine trunkierte, krankheits-assoziierte Mutante PrP\&\#916;32-134 (tr-PrP), der die potentielle neuroprotektive Octarepeat-Dom{\"a}ne entfernt wurde. Wt-PrP transgene Fliegen zeigten nach Vergleich mit Kontrolllinien eine signifikante, um 20\% erh{\"o}hte allgemeine Lebenserwartung. Obwohl die Expression von tr-PrP in Drosophila zu keinen nachweisbaren neuropathologischen Ver{\"a}nderungen f{\"u}hrte, wurde die Lebensspanne um 8\% reduziert. Ko-Expression von wt-PrP und tr-PrP konnte diesen Effekt nicht komplementieren, was eine chronische Toxizit{\"a}t der trunkierten Form nahelegt, die in diesem Zusammenhang der Neuroprotektion {\"u}bergeordnet ist. Da Lebenserwartung und Stressresistenz eng miteinander korrelieren, wurden die Fliegen den reaktiven Sauerstoffspezies Wasserstoffperoxid, Sauerstoff und Paraquat ausgesetzt, um auf drei unabh{\"a}ngigen Wegen oxidativen Stress zu induzieren. In der Tat vermittelt wt-PrP eine signifikante Stressresistenz, wohingegen tr-PrP-exprimierende Tiere eine normale Anf{\"a}lligkeit offenbarten, die jedoch teilweise durch Ko-Expression beider PrP-Formen komplementiert werden konnte. Hier erscheint die protektive Funktion von wt-PrP der Toxizit{\"a}t der Deletionsmutante {\"u}bergeordnet zu sein. Diese Daten belegen eine wichtige Funktion des Prion-Proteins bez{\"u}glich der Abwehr von oxidativem Stress. Essentiell ist dabei die Kupfer-bindende Octarepeat-Dom{\"a}ne, durch die m{\"o}glicherweise Fenton-{\"a}hnliche Reaktionen, die bei der Sauerstoff-Radikalsynthese eine wichtige Rolle spielen, inhibiert werden k{\"o}nnten. Konsistent damit ist die Beobachtung des Verlusts der erworbenen Stressresistenz nach Expression der Octarepeat-losen Mutante tr-PrP und die signifikante Reduktion der Lebenserwartung {\"u}ber einen bislang unaufgekl{\"a}rten Mechanismus. Das Drosophila PrP-Modell bietet die M{\"o}glichkeit, die physiologische Funktion von PrP detailliert zu untersuchen. Außerdem ist die Identifizierung unbekannter PrP-Interaktionspartner erm{\"o}glicht, um Signaltransduktionswege des PrP und die zugrunde liegenden neurodegenerativen Mechanismen aufzukl{\"a}ren.}, subject = {Prion}, language = {de} } @phdthesis{Porsch2002, author = {Porsch, Matthias}, title = {OMB and ORG-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3614}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Members of the T-box gene family encode transcription factors that play key roles during embryonic development and organogenesis of invertebrates and vertebrates. The defining feature of T-box proteins is an about 200 aa large, conserved DNA binding motif, the T domain. Their importance for proper development is highlighted by the dramatic phenotypes of T-box mutant animals. My thesis was mainly focused on two Drosophila T-box genes, optomotor-blind (omb) and optomotor-blind related 1 (org-1), and included (i) a genetic analysis of org-1 and (ii) the identification of molecular determinants within OMB and ORG-1 that confer functional specificity. (i) Genetic analysis of org-1 initially based on a behavioral Drosophila mutant, C31. C31 is a X-linked, recessive mutant and was mapped to 7E-F, the cytological region of org-1. This pleiotropic mutant is manifested in walking defects, structural aberrations in the central brain, and "held-out" wings. Molecular analysis revealed that C31 contains an insertion of a 5' truncated I retrotransposon within the 3' untranslated transcript of org-1, suggesting that C31 might represent the first org-1 mutant. Based on this hypothesis, we screened 44.500 F1 female offspring of EMS mutagenized males and C31 females for the "held-out" phenotype, but failed to isolate any C31 or org-1 mutant, although this mutagenesis was functional per se. Since we could not exclude the possibility that our failure is due to an idiosyncracy of C31, we intended not to rely on C31 in further genetic experiments and followed a reverse genetic strategy . All P element lines cytologically mapping to 7E-7F were characterized for their precise insertion sites. 13 of the 19 analyzed lines had P element insertions within a hot-spot 37 kb downstream of org-1. No P element insertions within org-1 could be identified, but several P element insertions were determined on either side of org-1. The org-1 nearest insertions were used for local-hop experiments, in which we associated 6 new genes with P insertions, but failed to target org-1. The closest P elements are still 10 kb away from org-1. Subsequently, we employed org-1 flanking P elements to induce precise deletions in 7E-F spanning org-1. Two org-1 flanking P elements were brought together on a recombinant chromosome. Remobilization of P elements in cis configuration frequently results in deletions with the P element insertion sites as deficiency endpoints. In a first attempt, we expected to identify deficiencies by screening for C31 alleles. 8 new C31 alleles could be isolated. The new C31 chromosomes, however, did not carry the desired deletion. Molecular analysis indicated that C31 is not caused by aberrations in org-1, but by mutations in a distal locus. We repeated the P element remobilization and screened for the absence of P element markers. 4 lethal chromosomes could be isolated with a deletion of the org-1 locus. (ii) The consequences of ectopic org-1 were analyzed using UAS-org-1 transgenic flies and a number of different Gal4 driver lines. Misexpression of org-1 during imaginal development interfered with the normal development of many organs and resulted in flies with a plethora of phenotypes. These include a homeotic transformation of distal antenna (flagellum) into distal leg structures, a strong size reduction of the legs along their proximo-distal axis, and stunted wings. Like ectopic org-1, ectopic omb leads to dramatic changes of normal developmental pathways in Drosophila as well. dpp-Gal4/ UAS-omb flies are late pupal lethal and show an ectopic pair of wings and largely reduced eyes. GMR-Gal4 driven ectopic omb expression in the developing eye causes a degeneration of the photoreceptor cells, while GMR-Gal4/ UAS-org-1 flies have intact eyes. Hence, ectopic org-1 and omb induce profound phenotypes that are qualitatively different for these homologous genes. To begin to address the question where within OMB and ORG-1 the specificity determinants reside, we conceptionally subdivided both proteins into three domains and tested the relevance ofthese domains for functional specificity in vivo. The single domains were cloned and used as modules to assemble all possible omb-org-1 chimeric trans- genes. A method was developed to determine the relative expression strength of different UAS-transgenes, allowing to compare the various transgenic constructs for qualitative differences only, excluding different transgene quantities. Analysis of chimeric omb-org-1 transgenes with the GMR-Gal4 driver revealed that all three OMB domains contribute to functional specificity.}, subject = {Taufliege}, language = {en} } @phdthesis{Putz2002, author = {Putz, Gabriele}, title = {Characterization of memories and ignorant (S6KII) mutants in operant conditioning in the heat-box}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-4195}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Learning and memory processes of operant conditioning in the heat-box were analysed. Age, sex, and larval desity were not critical parameters influencing memory, while low or high activity levels of flies were negatively correlated with their performance. In a search for conditioning parameters leading to high retention scores, intermittent training was shown to give better results than continuous training. As the memory test is the immediate continuation of the conditioning phase just omitting reinforcement, we obtain a memory which consists of two components: a spatial preference for one side of the chamber and a stay-where-you-are effect in which the side preference is contaminated by the persistence of heat avoidance. Intermittent training strengthens the latter. In the next part, memory retention was investigated. Flies were trained in one chamber and tested in a second one after a brief reminder training. With this direct transfer, memory scores reflect an associative learning process in the first chamber. To investigate memory retention after extended time periods, indirect transfer experiments were performed. The fly was transferred to a different environment between training and test phases. With this procedure an after-effect of the training was still observed two hours later. Surprisingly, exposure to the chamber without conditioning also lead to a memory effect in the indirect transfer experiment. This exposure effect revealed a dispositional change that facilitates operant learning during the reminder training. The various memory effects are independent of the mushroom bodies. The transfer experiments and yoked controls proved that the heat-box records an associative memory. Even two hours after the operant conditioning procedure, the fly remembers that its position in the chamber controls temperature. The cAMP signaling cascade is involved in heat-box learning. Thus, amnesiac, rutabaga, and dunce mutants have an impaired learning / memory. Searching for, yet unknown, genes and signaling cascades involved in operant conditioning, a Drosophila melanogaster mutant screen with 1221 viable X-chromosome P-element lines was performed. 29 lines with consistently reduced heat avoidance/ learning or memory scores were isolated. Among those, three lines have the p[lacW] located in the amnesiac ORF, confirming that with the chosen candidate criteria the heat-box is a useful tool to screen for learning and /or memory mutants. The mutant line ignP1 (8522), which is defective in the gene encoding p90 ribosomal S6 kinase (S6KII), was investigated. The P-insertion of line ignP1 is the first Drosophila mutation in the ignorant (S6KII) gene. It has the transposon inserted in the first exon. Mutant males are characterized by low training performance, while females perform well in the standard experiment. Several deletion mutants of the ignorant gene have been generated. In precise jumpouts the phenotype was reverted. Imprecise jumpouts with a partial loss of the coding region were defective in operant conditioning. Surprisingly, null mutants showed wild-type behavior. This might indicate an indirect effect of the mutated ignorant gene on learning processes. In classical odor avoidance conditioning, ignorant null mutants showed a defect in the 3-min, 30-min, and 3-hr memory, while the precise jumpout of the transposon resulted in a reversion of the behavioral phenotype. Deviating results from operant and classical conditioning indicate different roles for S6KII in the two types of learning.}, subject = {Taufliege}, language = {en} } @phdthesis{Reisch2003, author = {Reisch, Natasa}, title = {Das Cysteine-String-Protein in Drosophila melanogaster: Molekulare und funktionelle Analyse verschiedener CSP-Mutanten; Ein Modell zur r{\"a}umlich und zeitlich kontrollierten CSP-Expression}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-6291}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Die Exozytose von Neurotransmittern und Peptiden w{\"a}hrend der Verarbeitung und Weiterleitung von Reizen im Nervensystem wird durch eine komplexe Maschinerie von Proteinen reguliert. Das konservierte Cysteine String Protein (CSP), das gebunden an synaptische und andere sekretorische Vesikel vorliegt, konnte in den vergangenen Jahren als Teil in diesen Prozess eingeordnet werden. Die Frage nach der genauen Funktion von CSP w{\"a}hrend der Exozytose ist allerdings weiterhin offen. CSP-Nullmutanten in Drosophila melanogaster zeigen temperatursensitive Paralyse und eine extrem verk{\"u}rzte Lebenserwartung, gepaart mit verminderter Fertilit{\"a}t. In larvalen Nerv-Muskel Pr{\"a}paraten kommt es bei Temperaturen {\"u}ber 29°C zu einem reversiblen Block der elektrophysiologisch messbaren synaptischen Transmission. Die Prim{\"a}rstruktur des Cysteine String Proteins kann in folgende konservierte Sequenzabschnitte unterteilt werden: eine N-terminale Protein Kinase A Phosphorylierungsstelle, eine Region mit Homologie zu einer charakteristischen Dom{\"a}ne von DnaJ-Proteinen (DnaJ-Dom{\"a}ne), einen als Linkerregion bezeichneten Abschnitt, eine cysteinreiche Sequenz, die bei Drosophila aus dem namensgebenden Strang von 11 aufeinanderfolgenden Cysteinen flankiert von 2 Cysteinpaaren besteht, und einen schw{\"a}cher konservierten C-Terminus, in dem sich auch einzelne Spleißvarianten unterscheiden. Versuche mit Vertebraten konnten zeigen, dass CSP in einem trimeren Komplex aus Hsc70/CSP/SGT vorkommt und bei der Exozytose wahrscheinlich als molekulares Co-Chaperon wirkt. Der Cysteinstrang liegt mehrfach palmityliert vor und ist f{\"u}r die Zielfindung des Proteins zur Vesikelmembran essentiell. In vorangegangenen Arbeiten wurde begonnen, bei Drosophila durch gezielte Mutagenese und Keimbahntransformation die Rolle des Cysteinstrangs, der Linkerregion und des C-Terminus f{\"u}r die Funktion des CSP zu analysieren. In der vorliegenden Dissertation wurden in transgenen Fliegen die Eigenschaften von Isoformen mit vier unterschiedlich mutierten Varianten des Cysteinstrangs (CSLP, SCSP, CLP, SSP) und je Deletionen in der Linkerregion (L\&\#916;8) und im C-terminalen Bereich (C\&\#916;27) charakterisiert. Die subzellul{\"a}re Verteilung und ver{\"a}nderte Membranbindungseigenschaften dieser Proteine wurden mithilfe von Membranfraktionierung und Glycerindichtegradienten von Homogenaten der transgenen Mutanten aufgezeigt. Die Isoformen CLP und SSP sind aufgrund der fehlenden Palmitylierung nicht an die Membran der synaptischen Vesikel gebunden, w{\"a}hrend die Isoform CSLP sowohl in der Vesikelmembranfraktion als auch als l{\"o}sliches Protein nachgewiesen werden kann. Die flankierenden Cysteinpaare und die verbliebenen Cysteine in den Isoformen CSLP und SCSP erf{\"u}llen offenbar noch teilweise die Aufgabe des Cysteinstrangs bei der Zielfindung der Proteine. Eine Depalmitylierung mit Hydroxylamin l{\"o}st das verk{\"u}rzte SCSP Protein ebensowenig aus der Membran wie das intakte CSP. Die Ergebnisse dieser Untersuchungen stehen im Einklang mit immunhistochemischen Befunden. Die Deletion bzw. Substitution der zentralen 11 Cysteine in den Isoformen CSLP, CLP und SSP {\"a}ußert sich in den transgenen Fliegen in einer gleichm{\"a}ßigeren Verteilung der Proteine, die nicht mehr wie im Wildtyp auf das synaptische Neuropil beschr{\"a}nkt ist. Keine der Isoformen mit ver{\"a}ndertem Cysteinstrang ist in der Lage die Funktion des wildtypischen CSP zu {\"u}bernehmen, da die adulten transgenen Fliegen den temperatursensitiven Ph{\"a}notyp und eine kurze Lebensdauer {\"a}hnlich den Csp-Nullmutanten zeigen. Die Proteinisoformen L\&\#916;8 und C\&\#916;27 dagegen lassen in den biochemischen Analysen keine Abweichung vom Wildtyp erkennen und weisen auch eine wildtypische Verteilung in Kryostat-Gehirnschnitten auf. Die Deletion in der Linkerregion in der Isoform L\&\#916;8 scheint die Funktion des CSPs allerdings einzuschr{\"a}nken, da die entsprechenden transgenen Fliegen bereits bei 38°C, wildtypische Tiere dagegen erst bei 40°C paralysieren. Die in der Literatur beschriebene Interaktion zwischen Drosophila CSP und Syntaxin konnte f{\"u}r die transgen exprimierte gr{\"o}ßte CSP Isoform CSP1 in Immunpr{\"a}zipitationsexperimenten mit Drosophila-Kopfhomogenat best{\"a}tigt werden. Die Frage nach einer Interaktion zwischen Syntaxin und den anderen untersuchten mutierten CSP-Isoformen bleibt dagegen offen. Der zweite Teil dieser Arbeit befasst sich mit dem Versuch, mithilfe des UAS/Gal4- und des Flippase/FRT -Systems die CSP-Expression r{\"a}umlich und zeitlich zu kontrollieren. Dazu wurde aufgrund von Datenbankangaben eine minimale FRT-Sequenz aus Oligonukleotiden mit entsprechenden Linkern konstruiert. Das gesamte Csp-Gen beziehungsweise die Csp cDNA1 einschließlich der regulatorischen Sequenzen wurde zwischen zwei gleichgerichteten FRT-Sequenzen pW8 eingebracht. Die Keimbahntransformation f{\"u}hrte zu mehreren transgenen Fliegenlinien. Nach aufwendigen Kreuzungen mit Gal4-, UAS-Flippase- und Csp-Null-Linien entstanden Fliegen im CSP-Nullhintergrund, welche eine durch die verwendete Gal4-Linie definierte Expression von Flippase zeigten und das FRT-Konstrukt trugen. Diese Fliegen sollten in Flippase positiven Bereichen keine CSP-Expression mehr zeigen. Verhaltensanalysen an solchen Tieren bei normaler und erh{\"o}hter Temperatur k{\"o}nnten dann Aufschluss {\"u}ber die Funktion der Zellen ohne CSP-Expression geben. Leider konnten die erwarteten Ver{\"a}nderungen in der CSP-Expression nicht beobachtet werden, obwohl alle Konstrukte sich nach einer {\"U}berpr{\"u}fung als intakt erwiesen haben. Die Ursache f{\"u}r die fehlende Rekombination zwischen den FRT-Sequenzen ist m{\"o}glicherweise in einer zu geringen L{\"a}nge dieser Zielsequenz der Flippase zu suchen. Im dritten Abschnitt der Arbeit wird der Csp-Genlokus und seine benachbarten Gene vorgestellt, und die m{\"o}glichen Auswirkungen der Deletionen in den zur Verf{\"u}gung stehenden Mutanten CspU1, CspU1w und CspK16 diskutiert. Aufgrund der Daten aus dem Drosophila Genomprojekt lag die Spekulation nahe, dass der Ph{\"a}notyp der Deletionsmutanten auch durch eine ver{\"a}nderte Expression der benachbarten Gene stromab- und stromaufw{\"a}rts des Csp Gens beeinflusst werden k{\"o}nnte. Die Auswertung eines Northern Blots von PolyA+-RNA adulter Fliegen, sowie einfache Verhaltenstests an vorliegenden und neu generierten CSP-Nullmutanten konnten diesen Verdacht allerdings nicht best{\"a}tigen.}, subject = {Taufliege}, language = {de} } @phdthesis{Riemensperger2006, author = {Riemensperger, Thomas}, title = {Untersuchung pr{\"a}diktiver Eigenschaften des dopaminergen Systems von Drosophila melanogaster mittels genetisch kodierter Calcium Sensoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-19041}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Die Technik des optischen Imaging unter Verwendung DNA-codierter Sensoren erm{\"o}glicht es, Messungen neuraler Aktivit{\"a}ten in genetisch definierten Populationen von Neuronen durchzuf{\"u}hren. In der Vielzahl der verschiedenen entwickelten Sensoren konnten die Calciumsensoren bisher das beste Verh{\"a}ltnis zwischen Signal und Rauschen und die beste zeitliche Aufl{\"o}sung aufzeigen. Hierbei handelt es sich in erster Linie um zwei Typen von Sensoren, zum einen ratiometrische Sensoren, deren Signal auf einem Fluoreszenz Resonanz Energie Transfer (FRET) basiert, und zum anderen um zirkul{\"a}r permutierte Sensoren, die auf einem modifizierten GFP-Molek{\"u}l basieren, wobei das Signal auf einer ver{\"a}nderten Protonierung des Chromophors beruht. Beide Arten dieser Sensoren wurden schon erfolgreich zum Messen neuraler Aktivit{\"a}ten in Nervensystemen verschiedener Tierarten verwendet. Ein Teil dieser Arbeit bestand darin, zu untersuchen, welche Sensoren sich f{\"u}r die Messung an einem lebenden Organismus am besten eignen. Hierf{\"u}r wurden die Eigenschaften von vier verschiedenen FRET basierten Sensoren und zwei der zyklisch permutierten Sensoren nach Expression im zentralen Nervensystem von Drosophila charakterisiert. Die Sensoren wurden in Neuronen zweiter und dritter Ordnung des olfaktorischen Signalwegs exprimiert und ihre Antworten auf physiologische Duftstimulation oder artifiziell induzierte Depolarisation des Gehirns untersucht. W{\"a}hrend die calciumabh{\"a}ngigen Signale der zyklisch permutierten Sensoren in der Regel gr{\"o}ßer waren als die der FRET basierten Sensoren, zeichneten sich letztere durch ein besseres Signal zu Rausch-Verh{\"a}ltnis aus, wenn Bewegungen der fluoreszierenden Strukturen nicht zu vermeiden waren. Dies war auch der ausschlaggebende Grund f{\"u}r die Verwendung eines FRET basierten Sensors im anschließenden Teil der Arbeit. Im zweiten Teil der Arbeit wurde der Effekt untersucht, den die Paarung eines neutralen Stimulus mit einem bestrafenden Stimulus auf dopaminerge Neurone hat. Eine solche Paarung kann zu einer klassischen Konditionierung f{\"u}hren, einer einfachen Form des Lernens, in welcher das Tier einem urspr{\"u}nglich neutralen Stimulus einen Wert zuordnet, und dadurch sein Verhalten dem Stimulus gegen{\"u}ber {\"a}ndert. Die olfaktorische klassische Konditionierung in Drosophila wird seit vielen Jahren intensiv untersucht, um die molekularen und neuronalen Grundlagen von Lernen und Ged{\"a}chtnis zu charakterisieren. Dabei hat sich gezeigt, dass besonders die Pilzk{\"o}rper von essentieller Bedeutung f{\"u}r die Ausbildung eines olfaktorischen Ged{\"a}chtnisses sind. W{\"a}hrend das olfactorische System bei Insekten bereits detailiert analysiert wurde, ist {\"u}ber die Neurone, die den bestrafenden Stimulus vermitteln, nur sehr wenig bekannt. Unter Anwendung des funktionellen optischen Calcium Imaging konnte im Rahmen der Arbeit gezeigt werden, dass die Projektionen von dopaminergen Neuronen im Bereich der Loben der Pilzk{\"o}rper schwach auf die Pr{\"a}sentation eines Duftes, jedoch sehr stark auf eine Stimulation durch einen Elektroschock antworten. Nach mehrmaliger Paarung eines Duftes mit einem Elektroschock w{\"a}hrend eines Trainings, verl{\"a}ngert sich die Aktivit{\"a}t dieser dopaminergen Neurone auf den bestraften Duft hin im Test ohne Elektroschock drastisch, w{\"a}hrend die Antwort auf den Kontrollduft keine signifikanten Ver{\"a}nderungen aufweist. W{\"a}hrend bei S{\"a}ugetieren belohnende Reize bei appetitiven Lernvorg{\"a}ngen {\"u}ber dopaminerge Neurone vermittelt werden, spielen bei Drosophila diese Neurone offensichtlich eine Rolle bei der aversiven Konditionierung. Jedoch blieb, auch wenn sich die Rolle des Dopamins im Laufe der Evolution ge{\"a}ndert zu haben scheint, die F{\"a}higkeit dieses Neuronentyps, nicht nur auf einen eintreffenden verst{\"a}rkenden Stimulus zu reagieren, sondern diesen auch vorhersagen zu k{\"o}nnen, zwischen S{\"a}ugern und Drosophila erhalten.}, subject = {Taufliege}, language = {de} } @phdthesis{Rister2008, author = {Rister, Jens}, title = {Genetic dissection of peripheral pathways in the visual system of Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-25980}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Die visuellen Systeme von Vertebraten und Invertebraten weisen {\"A}hnlichkeiten in den ersten Schritten visueller Informationsverarbeitung auf. Im menschlichen Gehirn werden zum Beispiel die Modalit{\"a}ten Farbe, Form und Bewegung separat in parallelen neuronalen Pfaden verarbeitet. Dieses grundlegende Merkmal findet sich auch bei der Fliege Drosophila melanogaster, welche eine {\"a}hnliche Trennung in farbsensitive und (farbenblinde) bewegungssensitive Pfade aufweist, die durch zwei verschiedene Gruppen von Photorezeptoren (dem R1-6 und dem R7/8 System) determiniert werden. Fliegen haben ein hoch organisiertes visuelles System, welches durch die repetitive, retinotope Organisation von vier Neuropilen charakterisiert ist: Dies sind die Lamina, die Medulla, die Lobula und die Lobulaplatte. Jedes einzelne besteht aus Kolumnen, die denselben Satz von Nervenzellen enthalten. In der Lamina formen Axonb{\"u}ndel von sechs Photorezeptoren R1-6, die auf denselben Bildpunkt blicken, S{\"a}ulen, die als Cartridges bezeichnet werden. Diese sind die funktionellen visuellen „sampling units" und sind mit vier Typen von Interneuronen erster Ordnung assoziiert, die von R1-6 den gleichen Input erhalten: L1, L2, L3 und die Amakrinzellen (amc, mit ihrem postsynaptischen Partner T1). Diese stellen parallele Pfade dar, die auf anatomischer Ebene im Detail untersucht wurden; jedoch ist wenig {\"u}ber ihre funktionelle Rolle bei der Verarbeitung f{\"u}r das Verhalten relevanter Information bekannt, z.B. hinsichtlich der Blickstabilisierung, der visuellen Kurskontrolle oder der Fixation von Objekten. Die Verf{\"u}gbarkeit einer Vielfalt von neurogenetischen Werkzeugen f{\"u}r die Struktur-Funktionsanalyse bei Drosophila erm{\"o}glicht es, erste Schritte in Richtung einer genetischen Zerlegung des visuellen Netzwerks zu unternehmen, das Bewegungs- und Positionssehen vermittelt. In diesem Zusammenhang erwies sich die Wahl des Effektors als entscheidend. {\"U}berraschenderweise wurde festgestellt, dass das clostridiale Tetanus-Neurotoxin die Photorezeptorsynapsen adulter Drosophila Fliegen nicht blockiert, hingegen irreversible Sch{\"a}den bei Expression w{\"a}hrend deren Entwicklung verursacht. Aus diesem Grund wurde das dominant-negative shibire Allel shits1, welches sich als geeigneter erwies, zur Blockierung der Lamina Interneurone verwendet, um die Notwendigkeit der jeweiligen Pfade zu analysieren. Um festzustellen, ob letztere auch hinreichend f{\"u}r das gleiche Verhalten waren, wurde f{\"u}r die umgekehrte Strategie die Tatsache ausgenutzt, daß die Lamina Interneurone Histaminrezeptoren exprimieren, die vom ort Gen kodiert werden. Die spezifische Rettung der ort Funktion in definierten Pfaden im mutanten Hintergrund erm{\"o}glichte festzustellen, ob sie f{\"u}r eine bestimmte Funktion hinreichend waren. Diese neurogenetischen Methoden wurden mit der optomotorischen Reaktion und dem objektinduzierten Orientierungsverhalten als Verhaltensmaß kombiniert, um folgende Fragen innerhalb dieser Doktorarbeit zu beantworten: (a) Welche Pfade stellen einen Eingang in elementare Bewegungsdetektoren dar und sind notwendig und/oder hinreichend f{\"u}r die Detektion gerichteter Bewegung? (b) Gibt es Pfade, die spezifisch Reaktionen auf unidirektionale Bewegung vermitteln? (c) Welche Pfade sind notwendig und/oder hinreichend f{\"u}r das objektinduzierte Orientierungsverhalten? Einige grundlegende Eigenschaften des visuellen Netzwerks konnten dabei aufgedeckt werden: Die zwei zentralen Cartridge Pfade, die von den großen Monopolarzellen L1 und L2 repr{\"a}sentiert werden, haben eine Schl{\"u}sselfunktion bei der Bewegungsdetektion. {\"U}ber ein breites Spektrum von Reizbedingungen hinweg sind die beiden Subsysteme redundant und k{\"o}nnen Bewegung unabh{\"a}ngig voneinander verarbeiten. Um eine Beeintr{\"a}chtigung des Systems festzustellen, wenn nur einer der beiden Pfade intakt ist, muß dieses an die Grenzen seiner Leistungsf{\"a}higkeit gebracht werden. Bei niedrigem Signal/Rauschverh{\"a}ltnis, d.h. bei geringem Musterkontrast oder geringer Hintergrundbeleuchtung, hat der L2 Pfad eine h{\"o}here Sensitivit{\"a}t. Bei mittlerem Musterkontrast sind beide Pfade auf die Verarbeitung unidirektionaler Bewegung in entgegengesetzten Reizrichtungen spezialisiert. Im Gegensatz dazu sind weder der L3, noch der amc/T1 Pfad notwendig oder hinreichend f{\"u}r die Detektion von Bewegungen. W{\"a}hrend der erstere Positionsinformation f{\"u}r Orientierungsverhalten zu verarbeiten scheint, nimmt der letztere eine modulatorische Rolle bei mittlerem Kontrast ein. Es stellte sich heraus, daß das Orientierungsverhalten noch robuster als das Bewegungssehen ist und m{\"o}glicherweise auf einem weniger komplizierten Mechanismus beruht, da dieser keinen nichtlinearen Vergleich der Signale benachbarter visueller „sampling units" ben{\"o}tigt. Die Fixation von Objekten setzt nicht grunds{\"a}tzlich das Bewegungssehen voraus, allerdings verbessert die Detektion von Bewegung die Fixation von Landmarken, im besonderen, wenn diese schmal sind oder einen geringen Kontrast aufweisen.}, subject = {Genetik}, language = {en} } @phdthesis{Roth2003, author = {Roth, Martin}, title = {Functional and developmental characterisation of matrix binding sites in decapentaplegic}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7542}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {In the last years it became evident that many cytokines do not only bind to their specific cell surface receptors but also interact with components of the extracellular matrix. Mainly in Drosophila, several enzymes were identified, that are involved in glycosaminoglycan synthesis. Mutations in these enzymes mostly result in disturbances of several signaling pathways like hedgehog, wingless, FGF or dpp. In most cases it was, due to these pleiotropic effects, not possible to examine the relevance of matrix interactions for single pathways. The aim of this work was to examine the relevance of matrix interactions for the TGF-ß superfamily member DPP. Based on the fact that DPP is highly homologous to human BMP-2, the basic N-terminus of mature DPP was mutated, which has been shown to contain a heparin-binding site in BMP-2. Thus, a wildtype variant (D-MYC), a deletion variant (D-DEL), which lacked the whole basic part of the N-terminus and a duplication variant (D-DUP), which contained a second copy of the basic core moitiv, were generated. In order to characterise the variants biochemically, they were expressed in E.coli and refolded in a bioactive form. In chicken limbbud assay, the deletion variant was much more active than the wildtype variant, comparable to data of BMP-2. By means of biacore mesurements with the immobilised ectodomain of the high affinity type I receptor thick veins, it could be demonstrated, that the variants differ only in matrix binding and not in their receptor affinity. Different matrix binding was shown by Heparin FPLC. The biological relevance of the matrix interaction of DPP was examined in transgenic flies. To allow expression of the different variants under the control of various Gal4 driver lines, they were cloned behind an UAS-promoter site. In early tracheal development, a strong dependence of DPP signaling on matrix binding was observed. While ectopic expression of the deletion variant caused only minor defects, the branching pattern was strongly disturbed by overexpression of wildtype and duplication variant. Ubiquitous expression of the variants in the wing imaginal disc caused overproliferation of the disc and expansion of the omb target gene expression. The extent of phenotypes correlated with the matrix binding ability of the variants. Corresponding disturbances of the wing vein pattern was observed in adult flies. By the crossing of different dpp allels, transheterozygous animals were created, that lack dpp only in imaginal discs. Expression of the variants under the control of a suitable dpp-Gal4 driver line revealed insights into the biological relevance of matrix binding on DPP gradient formation and specific target gene activation in wing imaginal discs. It was shown, that all variants were able to generate a functional DPP gradient with correct expression of the target genes omb and spalt. Again a correlation between extent of target gene domains and matrix binding ability of the corresponding variants was found. Thus by mutating the N-terminus of DPP, it could be shown that this is responsible for DPP`s matrix interaction. Also the relevance of matrix binding of DPP in different tissues was examined. It turned out, that the reorganisation of tracheal branching by DPP strongly depends on matrix interactions wheras the establishing of a gradient in wing imaginal discs depends only gradually on matrix interactions. Based on these data a model for the action of DPP/TGFßs as morphogens was established. While a deletion of matrix binding leads to a decrease in specific bioactivity of the cytokine, the latter is increased by additional matrix binding sites.}, subject = {Taufliege}, language = {en} } @phdthesis{Ruf2016, author = {Ruf, Franziska}, title = {The circadian regulation of eclosion in \(Drosophila\) \(melanogaster\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146265}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Eclosion is the emergence of an adult insect from the pupal case at the end of development. In the fruit fly Drosophila melanogaster, eclosion is a circadian clock-gated event and is regulated by various peptides. When studied on the population level, eclosion reveals a clear rhythmicity with a peak at the beginning of the light-phase that persists also under constant conditions. It is a long standing hypothesis that eclosion gating to the morning hours with more humid conditions is an adaption to reduce water loss and increase the survival. Eclosion behavior, including the motor pattern required for the fly to hatch out of the puparium, is orchestrated by a well-characterized cascade of peptides. The main components are ecdysis-triggering hormone (ETH), eclosion hormone (EH) and crustacean cardioactive peptide (CCAP). The molt is initiated by a peak level and pupal ecdysis by a subsequent decline of the ecdysteroid ecdysone. Ecdysteroids are produced by the prothoracic gland (PG), an endocrine tissue that contains a peripheral clock and degenerates shortly after eclosion. Production and release of ecdysteroids are regulated by the prothoracicotropic hormone (PTTH). Although many aspects of the circadian clock and the peptidergic control of the eclosion behavior are known, it still remains unclear how both systems are interconnected. The aim of this dissertation research was to dissect this connection and evaluate the importance of different Zeitgebers on eclosion rhythmicity under natural conditions. Potential interactions between the central clock and the peptides regulating ecdysis motor behavior were evaluated by analyzing the influence of CCAP on eclosion rhythmicity. Ablation and silencing of CCAP neurons, as well as CCAP null-mutation did not affect eclosion rhythmicity under either light or temperature entrainment nor under natural conditions. To dissect the connection between the central and the peripheral clock, PTTH neurons were ablated. Monitoring eclosion under light and temperature entrainment revealed that eclosion became arrhythmic under constant conditions. However, qPCR expression analysis revealed no evidence for cycling of Ptth mRNA in pharate flies. To test for a connection with pigment-dispersing factor (PDF)-expressing neurons, the PDF receptor (PDFR) and short neuropeptide F receptor (sNPFR) were knocked down in the PTTH neurons. Knockdown of sNPFR, but not PDFR, resulted in arrhythmic eclosion under constant darkness conditions. PCR analysis of the PTTH receptor, Torso, revealed its expression in the PG and the gonads, but not in the brain or eyes, of pharate flies. Knockdown of torso in the PG lead to arrhythmicity under constant conditions, which provides strong evidence for the specific effect of PTTH on the PG. These results suggest connections from the PDF positive lateral neurons to the PTTH neurons via sNPF signaling, and to the PG via PTTH and Torso. This interaction presumably couples the period of the peripheral clock in the PG to that of the central clock in the brain. To identify a starting signal for eclosion and possible further candidates in the regulation of eclosion behavior, chemically defined peptidergic and aminergic neurons were optogenetically activated in pharate pupae via ChR2-XXL. This screen approach revealed two candidates for the regulation of eclosion behavior: Dromyosuppressin (DMS) and myo-inhibitory peptides (MIP). However, ablation of DMS neurons did not affect eclosion rhythmicity or success and the exact function of MIP must be evaluated in future studies. To assess the importance of the clock and of possible Zeitgebers in nature, eclosion of the wildtype Canton S and the clock mutant per01 and the PDF signaling mutants pdf01 and han5304 was monitored under natural conditions. For this purpose, the W{\"u}rzburg eclosion monitor (WEclMon) was developed, which is a new open monitoring system that allows direct exposure of pupae to the environment. A general decline of rhythmicity under natural conditions compared to laboratory conditions was observed in all tested strains. While the wildtype and the pdf01 and han5304 mutants stayed weakly rhythmic, the per01 mutant flies eclosed mostly arrhythmic. PDF and its receptor (PDFR encoded by han) are required for the synchronization of the clock network and functional loss can obviously be compensated by a persisting synchronization to external Zeitgebers. The loss of the central clock protein PER, however, lead to a non-functional clock and revealed the absolute importance of the clock for eclosion rhythmicity. To quantitatively analyze the effect of the clock and abiotic factors on eclosion rhythmicity, a statistical model was developed in cooperation with Oliver Mitesser and Thomas Hovestadt. The modelling results confirmed the clock as the most important factor for eclosion rhythmicity. Moreover, temperature was found to have the strongest effect on the actual shape of the daily emergence pattern, while light has only minor effects. Relative humidity could be excluded as Zeitgeber for eclosion and therefore was not further analyzed. Taken together, the present dissertation identified the so far unknown connection between the central and peripheral clock regulating eclosion. Furthermore, a new method for the analysis of eclosion rhythms under natural conditions was established and the necessity of a functional clock for rhythmic eclosion even in the presence of multiple Zeitgebers was shown.}, subject = {Taufliege}, language = {en} } @phdthesis{Sareen2011, author = {Sareen, Preeti}, title = {Visual attention in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69616}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {There is such vast amount of visual information in our surroundings at any time that filtering out the important information for further processing is a basic requirement for any visual system. This is accomplished by deploying attention to focus on one source of sensory inputs to the exclusion of others (Luck and Mangun 2009). Attention has been studied extensively in humans and non human primates (NHPs). In Drosophila, visual attention was first demonstrated in 1980 (Wolf and Heisenberg 1980) but this field remained largely unexplored until recently. Lately, however, studies have emerged that hypothesize the role of attention in several behaviors but do not specify the characteristic properties of attention. So, the aim of this research was to characterize the phenomenon of visual attention in wild-type Drosophila, including both externally cued and covert attention using tethered flight at a torque meter. Development of systematic quantifiable behavioral tests was a key aspect for this which was not only important for analyzing the behavior of a population of wild-type flies but also for comparing the wild-type flies with mutant flies. The latter would help understand the molecular, genetic, and neuronal bases of attention. Since Drosophila provides handy genetic tools, a model of attention in Drosophila will serve to the greater questions about the neuronal circuitry and mechanisms involved which might be analogous to those in primates. Such a model might later be used in research involving disorders of attention. Attention can be guided to a certain location in the visual field by the use of external cues. Here, using visual cues the attention of the fly was directed to one or the other of the two visual half-fields. A simple yet robust paradigm was designed with which the results were easily quantifiable. This paradigm helped discover several interesting properties of the cued attention, the most substantial one being that this kind of external guidance of attention is restricted to the lower part of the fly's visual field. The guiding cue had an after-effect, i.e. it could occur at least up to 2 seconds before the test and still bias it. The cue could also be spatially separated from the test by at least 20° and yet attract the attention although the extent of the focus of attention (FoA) was smaller than one lower visual half-field. These observations excluded the possibility of any kind of interference between the test and the cue stimuli. Another interesting observation was the essentiality of continuous visibility of the test stimulus but not the cue for effective cuing. When the contrast of the visual scene was inverted, differences in response frequencies and cuing effects were observed. Syndirectional yaw torque responses became more frequent than the antidirectional responses and cuing was no longer effective in the lower visual field with inverted contrast. Interestingly, the test stimulus with simultaneous displacement of two stripes not only effectuated a phasic yaw torque response but also a landing response. A 50 landing response was produced in more than half of the cases whenever a yaw torque response was produced. Elucidation of the neuronal correlates of the cued attention was commenced. Pilot experiments with hydroxyurea (HU) treated flies showed that mushroom bodies were not required for the kind of guidance of attention tested in this study. Dopamine mutants were also tested for the guidance of attention in the lower visual field. Surprisingly, TH-Gal4/UAS-shits1 flies flew like wild-type flies and also showed normal optomotor response during the initial calibration phase of the experiment but did not show any phasic yaw torque or landing response at 18 °C, 25 °C or 30 °C. dumb2 flies that have almost no D1 dopamine receptor dDA1 expression in the mushroom bodies and the central complex (Kim et al. 2007) were also tested and like THGal4/ UAS-shits1 flies did not show any phasic yaw torque or landing response. Since the dopamine mutants did not show the basic yaw torque response for the test the role of dopamine in attention could not be deduced. A different paradigm would be needed to test these mutants. Not only can attention be guided through external cues, it can also be shifted endogenously (covert attention). Experiments with the windows having oscillating stripes nicely demonstrated the phenomenon of covert attention due to the production of a characteristic yaw torque pattern by the flies. However, the results were not easily quantifiable and reproducible thereby calling for a more systematic approach. Experiments with simultaneous opposing displacements of two stripes provide a promising avenue as the results from these experiments showed that the flies had a higher tendency to deliver one type of response than when the responses would be produced stochastically suggesting that attention increased this tendency. Further experiments and analysis of such experiments could shed more light on the mechanisms of covert attention in flies.}, subject = {Visuelle Aufmerksamkeit}, language = {en} } @phdthesis{Saumweber2011, author = {Saumweber, Timo}, title = {Mechanism of Learning and Plasticity in Larval Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66354}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {According to a changing environment it is crucial for animals to make experience and learn about it. Sensing, integrating and learning to associate different kinds of modalities enables animals to expect future events and to adjust behavior in the way, expected as the most profitable. Complex processes as memory formation and storage make it necessary to investigate learning and memory on different levels. In this context Drosophila melanogaster represents a powerful model organism. As the adult brain of the fly is still quite complex, I chose the third instar larva as model - the more simple the system, the easier to isolate single, fundamental principles of learning. In this thesis I addressed several kinds of questions on different mechanism of olfactory associative and synaptic plasiticity in Drosophila larvae. I focused on short-term memory throughout my thesis. First, investigating larval learning on behavioral level, I developed a one-odor paradigm for olfactory associative conditioning. This enables to estimate the learnability of single odors, reduces the complexity of the task and simplify analyses of "learning mutants". It further allows to balance learnability of odors for generalization-type experiments to describe the olfactory "coding space". Furthermore I could show that innate attractiveness and learnability can be dissociated and found finally that paired presentation of a given odor with reward increase performance, whereas unpaired presentations of these two stimuli decrease performance, indicating that larva are able to learn about the presence as well as about the absence of a reward. Second, on behavioral level, together with Thomas Niewalda and colleagues we focussed on salt processing in the context of choice, feeding and learning. Salt is required in several physiological processes, but can neither be synthesized nor stored. Various salt concentrations shift the valence from attraction to repulsion in reflexive behaviour. Interestingly, the reinforcing effect of salt in learning is shifted by more than one order of magnitude toward higher concentrations. Thus, the input pathways for gustatory behavior appear to be more sensitive than the ones supporting gustatory reinforcement, which is may be due to the dissociation of the reflexive and the reinforcing signalling pathways of salt. Third, in cooperation with Michael Schleyer we performed a series of behavioral gustatory, olfactory preference tests and larval learning experiments. Based on the available neuroanatomical and behavioral data we propose a model regarding chemosensory processing, odor-tastant memory trace formation and the 'decision' like process. It incorporates putative sites of interaction between olfactory and gustatory pathways during the establishment as well as behavioral expression of odor-tastant memory. We claim that innate olfactory behavior is responsive in nature and suggest that associative conditioned behavior is not a simple substitution like process, but driven more likely by the expectation of its outcome. Fourth, together with Birgit Michels and colleagues we investigated the cellular site and molecular mode of Synapsin, an evolutionarily conserved, presynaptic vesicular phosphoprotein and its action in larval learning. We confirmed a previously described learning impairment upon loss of Synapsin. We localized this Synapsin dependent memory trace in the mushroom bodies, a third-order "cortical" brain region, and could further show on molecular level, that Synapsin is as a downstream element of the AC-cAMP-PKA signalling cascade. This study provides a comprehensive chain of explanation from the molecular level to an associative behavioral change. Fifth, in the main part of my thesis I focused on molecular level on another synaptic protein, the Synapse associated protein of 47kDa (Sap47) and its role in larval behavior. As a member of a phylogenetically conserved gene family of hitherto unknown function. It is localized throughout the whole neuropil of larval brains and associated with presynaptic vesicles. Upon loss of Sap47 larvae exhibit normal sensory detection of the to-be-associated stimuli as well as normal motor performance and basic synaptic transmission. Interestingly, short-term plasticity is distorted and odorant-tastant associative learning ability is reduced. This defect in associative function could be rescued by restoring Sap47 expression. Therefore, this report is the first to suggest a function for Sap47 and specifically argues that Sap47 is required for synaptic as well as for behavioral plasticity in Drosophila larva. This prompts the question whether its homologs are required for synaptic and behavioral plasticity also in other species. Further in the last part of my thesis I contributed to the study of Ayse Yarali. Her central topic was the role of the White protein in punishment and relief learning in adult flies. Whereas stimuli that precede shock during training are subsequently avoided as predictors for punishment, stimuli that follow shock during training are later on approached, as they predict relief. Concerning the loss of White we report that pain-relief learning as well as punishment learning is changed. My contribution was a comparison between wild type and the white1118 mutant larvae in odor-reward learning. It turned out that a loss of White has no effect on larval odorant-tastant learning. This study, regarding painrelief learning provides the very first hints concerning the genetic determinants of this form of learning.}, subject = {Taufliege}, language = {en} } @phdthesis{Schindelin2005, author = {Schindelin, Johannes}, title = {The standard brain of Drosophila melanogaster and its automatic segmentation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15518}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In this thesis, I introduce the Virtual Brain Protocol, which facilitates applications of the Standard Brain of Drosophila melanogaster. By providing reliable and extensible tools for the handling of neuroanatomical data, this protocol simplifies and organizes the recurring tasks involved in these applications. It is demonstrated that this protocol can also be used to generate average brains, i.e. to combine recordings of several brains with the same features such that the common features are emphasized. One of the most important steps of the Virtual Insect Protocol is the aligning of newly recorded data sets with the Standard Brain. After presenting methods commonly applied in a biological or medical context to align two different recordings, it is evaluated to what extent this alignment can be automated. To that end, existing Image Processing techniques are assessed. I demonstrate that these techniques do not satisfy the requirements needed to guarantee sensible alignments between two brains. Then, I analyze what needs to be taken into account in order to formulate an algorithm which satisfies the needs of the protocol. In the last chapter, I derive such an algorithm using methods from Information Theory, which bases the technique on a solid mathematical foundation. I show how Bayesian Inference can be applied to enhance the results further. It is demonstrated that this approach yields good results on very noisy images, detecting apparent boundaries between structures. The same approach can be extended to take additional knowledge into account, e.g. the relative position of the anatomical structures and their shape. It is shown how this extension can be utilized to segment a newly recorded brain automatically.}, subject = {Taufliege}, language = {en} } @phdthesis{Schleyer2012, author = {Schleyer, Michael}, title = {Integrating past, present and future: mechanisms of a simple decision in larval Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78923}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Is behaviour response or action? In this Thesis I study this question regarding a rather simple organism, the larva of the fruit fly Drosophila melanogaster. Despite its numerically simple brain and limited behavioural repertoire, it is nevertheless capable to accomplish surprisingly complex tasks. After association of an odour and a rewarding or punishing reinforcement signal, the learnt odour is able to retrieve the formed memory trace. However, the activated memory trace is not automatically turned into learned behaviour: Appetitive memory traces are behaviourally expressed only in absence of the rewarding tastant whereas aversive memory traces are behaviourally expressed in the presence of the punishing tastant. The 'decision' whether to behaviourally express a memory trace or not relies on a quantitive comparison between memory trace and current situation: only if the memory trace (after odour-sugar training) predicts a stronger sugar reward than currently present, animals show appetitive conditioned behaviour. Learned appetitive behaviour is best seen as active search for food - being pointless in the presence of (enough) food. Learned aversive behaviour, in turn, can be seen as escape from a punishment - being pointless in absence of punishment. Importantly, appetitive and aversive memory traces can be formed and retrieved independent from each other but also can, under appriate circumstances, summate to jointly organise conditioned behaviour. In contrast to learned behaviour, innate olfactory behaviour is not influenced by gustatory processing and vice versa. Thus, innate olfactory and gustatory behaviour is rather rigid and reflexive in nature, being executed almost regardless of other environmental cues. I suggest a behavioural circuit-model of chemosensory behaviour and the 'decision' process whether to behaviourally express a memory trace or not. This model reflects known components of the larval chemobehavioural circuit and provides clear hypotheses about the kinds of architecture to look for in the currently unknown parts of this circuit. The second chapter deals with gustatory perception and processing (especially of bitter substances). Quinine, the bitter tastant in tonic water and bitter lemon, is aversive for larvae, suppresses feeding behaviour and can act as aversive reinforcer in learning experiments. However, all three examined behaviours differ in their dose-effect dynamics, suggesting different molecular and cellular processing streams at some level. Innate choice behaviour, thought to be relatively reflexive and hard-wired, nevertheless can be influenced by the gustatory context. That is, attraction toward sweet tastants is decreased in presence of bitter tastants. The extent of this inhibitory effect depends on the concentration of both sweet and bitter tastant. Importantly, sweet tastants differ in their sensitivity to bitter interference, indicating a stimulus-specific mechanism. The molecular and cellular processes underlying the inhibitory effect of bitter tastants are unknown, but the behavioural results presented here provide a framework to further investigate interactions of gustatory processing streams.}, subject = {Lernen}, language = {en} } @phdthesis{Schlichting2015, author = {Schlichting, Matthias}, title = {Light entrainment of the circadian clock: the importance of the visual system for adjusting Drosophila melanogaster´s activity pattern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114457}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The change of day and night is one of the challenges all organisms are exposed to, as they have to adjust their physiology and behavior in an appropriate way. Therefore so called circadian clocks have evolved, which allow the organism to predict these cyclic changes of day and night. The underlying molecular mechanism is oscillating with its endogenous period of approximately 24 hours in constant conditions, but as soon as external stimuli, so called Zeitgebers, are present, the clocks adjust their period to exactly 24h, which is called entrainment. Studies in several species, including humans, animals and plants, showed that light is the most important Zeitgeber synchronizing physiology and behavior to the changes of day and night. Nevertheless also other stimuli, like changes in temperature, humidity or social interactions, are powerful Zeitgebers for entraining the clock. This thesis will focus on the question, how light influences the locomotor behavior of the fly in general, including a particular interest on the entrainment of the circadian clock. As a model organism Drosophila melanogaster was used. During the last years several research groups investigated the effect of light on the circadian clock and their results showed that several light input pathways to the clock contribute to wild-type behavior. Most of the studies focused on the photopigment Cryptochrome (CRY) which is expressed in about half of the 150 clock neurons in the fly. CRY is activated by light, degrades the clock protein Timeless (TIM) and hence entrains the clock to the light-dark (LD)-cycle resulting from changes of day and night. However, also flies lacking CRY are still able to entrain their clock mechanism as well as their activity-rest-rhythm to LD-cycles, clearly showing that the visual system of the fly also contributes to clock synchronization. The mechanism how light information from the visual system is transferred to the clock is so far still unknown. This is also true for so-called masking-effects which are changes in the behavior of the animal that are directly initiated by external stimuli and therefore independent of the circadian clock. These effects complement the behavior of the animals as they enable the fly to react quickly to changes in the environment even during the clock-controlled rest state. Both of these behavioral features were analyzed in more detail in this study. On the one hand, we investigated the influence of the compound eyes on the entrainment of the clock neurons and on the other hand, we tried to separate clock-controlled behavior from masking. To do so "nature-like" light conditions were simulated allowing the investigation of masking and entrainment within one experiment. The simulation of moonlight and twilight conditions caused significant changes in the locomotor behavior. Moonlit nights increased nocturnal activity levels and shifted the morning (M) and evening (E) activity bouts into the night. The opposite was true for the investigation of twilight, as the activity bouts were shifted into the day. The simulation of twilight and moonlight within the same experiment further showed that twilight appears to dominate over moonlight, which is in accordance to the assumption that twilight in nature is one of the key signals to synchronize the clock as the light intensity during early dawn rises similarly in every season. By investigating different mutants with impaired visual system we showed that the compound eyes are essential for the observed behavioral adaptations. The inner receptor cells (R7 and R8) are important for synchronizing the endogenous clock mechanism to the changes of day and night. In terms of masking, a complex interaction of all receptor cells seems to adjust the behavioral pattern, as only flies lacking photopigments in inner and outer receptor cells lacked all masking effects. However, not only the compound eyes seem to contribute to rhythmic activity in moonlit nights. CRY-mutant flies shift their E activity bout even more into the night than wild-type flies do. By applying Drosophila genetics we were able to narrow down this effect to only four CRY expressing clock neurons per hemisphere. This implies that the compound eyes and CRY in the clock neurons have antagonistic effects on the timing of the E activity bout. CRY advances activity into the day, whereas the compound eyes delay it. Therefore, wild-type behavior combines both effects and the two light inputs might enable the fly to time its activity to the appropriate time of day. But CRY expression is not restricted to the clock neurons as a previous study showed a rather broad distribution within the compound eyes. In order to investigate its function in the eyes we collaborated with Prof. Rodolfo Costa (University of Padova). In our first study we were able to show that CRY interacts with the phototransduction cascade and thereby influences visual behavior like phototaxis and optomotor response. Our second study showed that CRY in the eyes affects locomotor activity rhythms. It appears to contribute to light sensation without being a photopigment per se. Our results rather indicate that CRY keeps the components of the phototransduction cascade close to the cytoskeleton, as we identified a CRY-Actin interaction in vitro. It might therefore facilitate the transformation of light energy into electric signals. In a further collaboration with Prof. Orie Shafer (University of Michigan) we were able to shed light on the significance of the extraretinal Hofbauer-Buchner eyelet for clock synchronization. Excitation of the eyelet leads to Ca2+ and cAMP increases in specific clock neurons, consequently resulting in a shift of the flies´ rhythmic activity. Taken together, the experiments conducted in this thesis revealed new functions of different eye structures and CRY for fly behavior. We were furthermore able to show that masking complements the rhythmic behavior of the fly, which might help to adapt to natural conditions.}, subject = {Taufliege}, language = {en} } @phdthesis{Schmid2010, author = {Schmid, Benjamin}, title = {Computational tools for the segmentation and registration of confocal brain images of Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51490}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Neuroanatomical data in fly brain research are mostly available as spatial gene expression patterns of genetically distinct fly strains. The Drosophila standard brain, which was developed in the past to provide a reference coordinate system, can be used to integrate these data. Working with the standard brain requires advanced image processing methods, including visualisation, segmentation and registration. The previously published VIB Protocol addressed the problem of image registration. Unfortunately, its usage was severely limited by the necessity of manually labelling a predefined set of neuropils in the brain images at hand. In this work I present novel tools to facilitate the work with the Drosophila standard brain. These tools are integrated in a well-known open-source image processing framework which can potentially serve as a common platform for image analysis in the neuroanatomical research community: ImageJ. In particular, a hardware-accelerated 3D visualisation framework was developed for ImageJ which extends its limited 3D visualisation capabilities. It is used for the development of a novel semi-automatic segmentation method, which implements automatic surface growing based on user-provided seed points. Template surfaces, incorporated with a modified variant of an active surface model, complement the segmentation. An automatic nonrigid warping algorithm is applied, based on point correspondences established through the extracted surfaces. Finally, I show how the individual steps can be fully automated, and demonstrate its application for the successful registration of fly brain images. The new tools are freely available as ImageJ plugins. I compare the results obtained by the introduced methods with the output of the VIB Protocol and conclude that our methods reduce the required effort five to ten fold. Furthermore, reproducibility and accuracy are enhanced using the proposed tools.}, subject = {Taufliege}, language = {en} } @phdthesis{Schneeberger2002, author = {Schneeberger, Daniela}, title = {Molekulare und funktionelle Analyse der p21-aktivierten Kinase Mbt (mushroom bodies tiny) in der Augen- und Pilzk{\"o}rperentwicklung von Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-4410}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit Mbt, einem hochkonservierten Signalmolek{\"u}l aus der Familie der p21-aktivierten Kinasen (PAK) aus Drosophila, w{\"a}hrend der Augen- und Pilzk{\"o}rperentwicklung. Mbt wird aufgrund von Sequenzhomologien der PAK Unterfamilie II (PAK4-6) zugeordnet. PAK4-6 binden pr{\"a}ferentiell die aktivierten Rho-GTPasen Cdc42 und schw{\"a}cher Rac, werden durch diese Bindung jedoch nicht aktiviert, sondern an bestimmte Zellkompartimente rekrutiert. In Struktur- Funktionsanalysen in vitro und in vivo konnte gezeigt werden, dass Mbt ebenfalls fast ausschließlich mit aktiviertem Cdc42 und kaum mit aktiviertem Rac interagiert. Diese Interaktion f{\"u}hrt nicht zur Aktivierung von Mbt, sondern eher zu einer Verringerung der Kinaseaktivit{\"a}t. Eine weitere Funktion der Interaktion von Cdc42 und Mbt ist die Rekrutierung von Mbt an die Adh{\"a}renzverbindungen (AV) in sich entwickelnden Photorezeptorzellen. Außerdem kann katalytisch inaktives Mbt im Gegensatz zu Cdc42-bindungsdefizientem Mbt partiell die Mbt-Funktion in mbtP1-Fliegen {\"u}bernehmen. Mbt hat also auch kinaseunabh{\"a}ngige Funktionen. W{\"a}hrend der Pilzk{\"o}rperentwicklung sind sind die Cdc42-Bindungsdom{\"a}ne und die Kinasedom{\"a}ne von Mbt ebenfalls essentiell, ob subzellul{\"a}re Lokalisation hier eine {\"a}hnlich wichtige Rolle spielt, wurde nicht untersucht. Als Mbt-Interaktionspartner wurden in einem Yeast-two-Hybrid Screen drei neuartige Proteine identifiziert. Zwei davon, CG8818 und CG14880, k{\"o}nnen als Substrat von Mbt fungieren. Allerdings kann nur f{\"u}r CG8818 eine direkte Bindung spezifisch mit aktiviertem Mbt nachgewiesen werden. Die Interaktion mit CG14880 scheint transient zu sein und nur f{\"u}r die Zeit der Phosphorylierungsreaktion anzudauern. Gegen CG8818 wurde ein Antiserum hergestellt, das nach seiner Charakterisierung in biochemischen und histologischen Ans{\"a}tzen zum Einsatz kommen soll. In einem genetischen Screen wurden Mutationen in canoe als Verst{\"a}rker und Mutationen in eip75b als Suppressor des mbtP3-Augenph{\"a}notyps gefunden. Eip75B ist ein putativer Steroidhormonrezeptor und wird w{\"a}hrend der Verpuppung exprimiert, also zu dem Zeitpunkt, wenn sich der mbt-Ph{\"a}notyp ausbildet. Interessanterweise haben Mutationen in eip75b keinen Effekt auf den mbtP3-Pilzk{\"o}rperph{\"a}notyp. Canoe ist wie Mbt an den AV von sich entwickelnden Photorezeptorzellen lokalisiert und spielt ebenfalls w{\"a}hrend deren Morphogenese eine Rolle. Canoe ist ein aktinbindendes Protein und k{\"o}nnte eine Verbindung von Mbt zum Cytoskelett darstellen, das der dynamischen Regulation bedarf, um morphogenetische Prozesse voranzutreiben. Eine direkte Interaktion kann nicht nachgewiesen werden. Auch w{\"a}hrend der Pilzk{\"o}rperentwicklung scheinen Mbt und Canoe im gleichen Signalweg aktiv zu sein. Genetische Interaktion mit mbtP3 w{\"a}hrend der Augenentwicklung konnte außerdem f{\"u}r Mutationen in slingshot und twinstar gezeigt werden, die beide in die Regulation des Cytoskeletts involviert sind. Das Transmembranprotein Crumbs scheint ebenfalls zusammen mit Mbt in der Photorezeptorzellmorphogenese eine Rolle zu spielen. Außerdem weißen erste Experimente darauf hin, dass Mbt im ERK-MAP Kinase-Signalweg eine Rolle spielt. Durch die Entdeckung der direkten und indirekten Interaktionspartner bietet sich nun die Gelegenheit, die Funktion und Wirkungsweise von Mbt weiter zu entschl{\"u}sseln. Damit kann ein wesentlicher Beitrag zur Aufkl{\"a}rung der Rolle von PAK-Proteinen w{\"a}hrend morphogenetischer Prozesse und der Regulation der Zellzahl in der Entwicklung geleistet werden.}, subject = {Taufliege}, language = {de} } @phdthesis{Schubert2010, author = {Schubert, Alice}, title = {Immunhistochemische und funktionelle Charakterisierung der Serin/Arginin-Proteinkinase SRPK79D mit Identifizierung von Interaktionspartnern in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53841}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Auf der Suche nach Mutanten mit einer vom Wildtyp abweichenden Verteilung des Aktive Zone-Proteins Bruchpilot wurde die Serin/Arginin-Proteinkinase SRPK79D identifiziert. Hier zeigte sich, dass die Mutation im Srpk79D-Gen zu einer Agglomeration von Bruchpilot in den larvalen segmentalen und intersegmentalen Nerven f{\"u}hrt. In der vorliegenden Arbeit sollte die SRPK79D genauer charakterisiert werden. Nach Pr{\"a}adsorptionen und Affinit{\"a}tsreinigungen von in einer fr{\"u}heren Arbeit erzeugten Antiseren, gelang es die Lokalisation der {\"u}berexprimierten SRPK79D-GFP-Isoformen zu bestimmen. Dabei zeigte sich, dass keines der Antiseren die endogene Kinase im Western Blot oder immunhistocheimisch detektieren konnte. Dies legt den Schluss nahe, dass die Expression der SRPK79D in einer geringen Konzentration erfolgt. Es war jedoch m{\"o}glich die endogene SRPK79D-PC-Isoform mittels einer Immunpr{\"a}zipitation soweit anzureichern, dass sie im Western Blot nachweisbar war. F{\"u}r die SRPK79D-PB-Isoform gelang dies allerdings nicht. Anhand von larvalen Nerv-Muskel-Pr{\"a}paraten konnte gezeigt werden, dass die panneural {\"u}berexprimierte SRPK79D-PC-GFP-Isoform an die Aktiven Zone transportiert wird und dort mit Bruchpilot, sowie den Interaktionspartnern von Bruchpilot Liprin-α und Rab3 kolokalisiert. Außerdem liegt sie diffus im Zytoplasma von neuronalen Zellk{\"o}rpern vor. In adulten Gehirnen lokalisiert die transgen {\"u}berexprimierte SRPK79D-PC-GFP im Fanshaped body, Ringkomplex und in neuronalen Zellk{\"o}rpern. Die panneural {\"u}berexprimierte SRPK79D-PB-GFP-Isoform liegt im larvalen und adulten Gehirn lokal im Zytoplasma der Perikaryen akkumuliert vor und wird nicht an die Aktive Zone transportiert. Das PB-Antiserum erkennt im adulten Gehirn neuronale Zellk{\"o}rper und das Neuropil in der Calyxregion der Pilzk{\"o}rper. Immunhistochemische F{\"a}rbungen von larvalen Nerv-Muskel-Pr{\"a}paraten mit verschiedenen Antik{\"o}rpern gegen neuronale Proteine belegen, dass die Agglomerate in der Srpk79D-Mutante f{\"u}r Bruchpilot spezifisch sind. Es konnten bisher keine weiteren Komponenten der Agglomerate detektiert werden. Auch ein genereller axonaler Defekt konnte durch F{\"a}rbungen gegen CSP, Synaptotagmin und Experimenten mit dem Mitochondrienfarbstoff MitoTracker® FM Green ausgeschlossen werden. Die quantitative Auswertung der Pr{\"a}parate zeigte, dass die Morphologie der synaptischen Boutons und die Zahl der Aktiven Zonen durch die Mutation im Srpk79D-Gen nicht beeinflusst werden. Um gesicherte Kenntnis dar{\"u}ber zu erlangen, ob die Mutation im Srpk79D-Gen die beobachteten Ph{\"a}notypen verursacht, wurden Rettungsexperimente durchgef{\"u}hrt. Es konnte sowohl f{\"u}r das hypomorphe Srpk79DP1-Allel, als auch f{\"u}r die Nullmutante Srpk79DVN eine nahezu vollst{\"a}ndige Rettung des Agglomerat-Ph{\"a}notyps mit der panneural exprimierten SRPK79D-PF- oder der SRPK79D-PB-Isoform erreicht werden. Aus diesen Ergebnissen folgt, dass beide Isoformen der SRPK79D in der Lage sind den Bruchpilot-Agglomerat-Ph{\"a}notyp zu retten, die Rettung der Verhaltensdefizite jedoch alle Isoformgruppen ben{\"o}tigen. Um zu untersuchen, ob der Agglomerations-Ph{\"a}notyp der Srpk79D-Mutanten auf einer {\"U}berexpression des Bruchpilotgens oder auf Fehlspleißen seiner pr{\"a}-mRNA beruht, wurden Immunpr{\"a}zipitationen, semiquantitative RT-PCRs und Real Time-PCRs durchgef{\"u}hrt. Ausgehend von den Ergebnissen kann eine m{\"o}gliche {\"U}berexpression bzw. Spleißdefekte von Bruchpilot weitgehend ausgeschlossen werden. Die simultane {\"U}berexpression von SRPK79D und Bruchpilot konnte den Ph{\"a}notyp der Bruchpilot-{\"U}berexpression nicht retten. Anhand der stimulated emission depletion-Mikroskopie konnte gezeigt werden, dass die gebildeten Agglomerate das charakteristische Donut-f{\"o}rmige Muster der T-bars zeigen und wahrscheinlich als fusionierte Ketten von T-bars in den larvalen Nerven vorliegen. Beim in vivo Imaging Versuch konnte demonstriert werden, dass das verk{\"u}rzte Bruchpilot-D3-Strawberry in die Bruchpilot-Agglomerate der Srpk79D-Nullmutante eingebaut wird und dass gr{\"o}ßere Agglomerate unbewegt im Nerv verharren. Der anterograde und retrograde Transport kleinerer Agglomerate konnte verzeichnet werden. Bei CytoTrap-Yeast-two-hybrid-Experimenten konnten f{\"u}r die SRPK79D-PB Isoform vier potentielle Interaktionspartner identifiziert werden: das Hitzeschockprotein Hsp70Bbb, die mitochondriale NADH-Dehydrogenase mt:ND5, das large ribosomal RNA Gen in Mitochondrien und das am Spleißen beteiligte Protein 1.3CC/Caper. Die Sequenzierung zeigte, dass nur das letzte Exon von Caper im pMyr-Vektor vorliegt. Der f{\"u}r die PC-Isoform durchgef{\"u}hrte CytoTrap-Versuch ergab nur Temperatur-Revertanten. SR-Proteinkinasen phosphorylieren die RS-Dom{\"a}ne von SR-Proteinen und sind dadurch an der Regulation des konstitutiven und alternativen Spleißens beteiligt. Somit stellen die acht identifizierten SR-Proteine in Drosophila potentielle Interaktionspartner der SRPK79D dar. Die durch RNAi-vermittelte Reduktion von sieben SR-Proteinen f{\"u}hrte zu keiner Agglomeration von Bruchpilot. Jedoch f{\"u}hrte die RNAi-vermittelte Reduktion des SR-Proteins Spleißfaktor 2 (SF2) zu kleineren Bruchpilot-Agglomeraten in den axonalen Nerven. SF2 ist selbst kein Bestandteil der Agglomerate der Srpk79D-Nullmutante. Die {\"U}berexpression von SF2 f{\"u}hrt wahrscheinlich zu einem axonalen Transportdefekt, wie die F{\"a}rbung gegen das Cysteine string protein zeigte. Weiterhin f{\"u}hrt die {\"U}berexpression zu einer Akkumulation von SF2 in larvalen Axonen und im adulten Gehirn der Fliegen. SF2 ist nicht nur in Zellkernen s{\"a}mtlicher Zellen nachweisbar, sondern es konnte auch ein spezifisches Signal im subsynaptischen Retikulum der Postsynapse detektiert werden, wie die F{\"a}rbungen gegen Disc large best{\"a}tigten.}, subject = {Taufliege}, language = {de} } @phdthesis{Schubert2019, author = {Schubert, Frank Klaus}, title = {The circadian clock network of \(Drosophila\) \(melanogaster\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157136}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {All living organisms need timekeeping mechanisms to track and anticipate cyclic changes in their environment. The ability to prepare for and respond to daily and seasonal changes is endowed by circadian clocks. The systemic features and molecular mechanisms that drive circadian rhythmicity are highly conserved across kingdoms. Therefore, Drosophila melanogaster with its relatively small brain (ca. 135.000 neurons) and the outstanding genetic tools that are available, is a perfect model to investigate the properties and relevance of the circadian system in a complex, but yet comprehensible organism. The last 50 years of chronobiological research in the fruit fly resulted in a deep understanding of the molecular machinery that drives circadian rhythmicity, and various histological studies revealed the neural substrate of the circadian system. However, a detailed neuroanatomical and physiological description on the single-cell level has still to be acquired. Thus, I employed a multicolor labeling approach to characterize the clock network of Drosophila melanogaster with single-cell resolution and additionally investigated the putative in- and output sites of selected neurons. To further study the functional hierarchy within the clock network and to monitor the "ticking clock" over the course of several circadian cycles, I established a method, which allows us to follow the accumulation and degradation of the core clock genes in living brain explants by the means of bioluminescence imaging of single-cells.}, subject = {Taufliege}, language = {en} } @phdthesis{Schwenkert2005, author = {Schwenkert, Isabell}, title = {Phenotypic characterization of hangover at the neuromuscular junction}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14977}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Ethanoltoleranz beruht vermutlich auf Ver{\"a}nderung in synaptischer Plastizit{\"a}t; da die Mechanismen, die zu dieser Anpassung der Synapsen f{\"u}hren, in hang-Mutanten offensichtlich defekt sind, war es Ziel dieser Arbeit zu erkl{\"a}ren, wie HANG zu synaptischer Plastizit{\"a}t beitr{\"a}gt. In diesem Zusammenhang war es besonders wichtig herauszufinden, in welchem neuronalen Prozeß HANG eine Rolle spielt. Antik{\"o}rperfarbungen gegen HANG zeigten, da das Protein in allen neuronalen Zellkernen larvaler und adulter Gehirne vorhanden ist. Gehirne der hangAE10 Mutante zeigen keine F{\"a}rbung, was best{\"a}tigt, da diese Tiere Nullmutanten f{\"u}r HANG sind. Eine genauere Analyse der Verteilung von HANG im Zellkern ergab, daß HANG in einem punktartigen Muster an bestimmten Stellen im Kern angereichert ist; diese HANG-Aggregate sind an der Innenseite der Kernmembran lokalisiert und colokalisieren nicht mit dem Chromatin. Auf der Basis dieser Ergebnissen wurde postuliert, daß HANG vermutlich an der Stabilisierung, Prozessierung oder dem Export von mRNAs beteiligt ist. Da synaptische Plastizit{\"a}t gut an den einzelnen Neuronen der neuromuskul{\"a}ren Synapse von Drosophila-Larven studiert werden kann, wurde die Morphologie der Motorneurone dritter Larven am Muskelpaar 6/7 des Segments A4 untersucht. Diese Untersuchungen zeigten, da Boutonanzahl und Axonl{\"a}nge in hangAE10-Larven um 40 \% erh{\"o}ht sind. Außerdem zeigen einige Boutons der hang-Mutanten eine abnormale, sanduhrf{\"o}rmige Form, was darauf hinweist, daß sie nach Initiation der Bouton-Teilung m{\"o}glicherweise in einem halb-separierten Zustand geblieben sind. Die Zunahme an Boutons in den Mutanten ist im wesentlichen auf eine Zunahme der Anzahl der Typ Ib-Boutons zur{\"u}ckzuf{\"u}hren. Die Analyse der Verteilung verschiedener synaptischer Marker in hangover-Mutanten ergab keine Hinweise auf Abnormalit{\"a}ten im Zytoskelett oder in der Ausbildung der pr{\"a}-und postsynaptischen Strukturen. Des weiteren ist die Anzahl der aktiven Zonen relativ zur Boutonoberfl{\"a}che nicht ver{\"a}ndert; da hang-Mutanten aber mehr synaptische Boutons pro synaptischem Terminal besitzen, kann man insgesamt von einer Zunahme der Anzahl der aktiven Zonen ausgehen. Die pr{\"a}synaptische Expression von HANG in den Mutanten rettet die erh{\"o}hte Boutonanzahl und die verl{\"a}ngerten Axone, was ebenfalls beweist, daß die beobachteten synaptischen Defekte auf das Fehlen von HANG und nicht auf Sekund{\"a}rmutationen zur{\"u}ckzuf{\"u}hren sind. Eine postsynaptische Expression der hangover cDNA in den Mutanten dagegen rettet den Ph{\"a}notyp nicht. Die Anzahl der synaptischen Boutons wird unter anderem durch cAMP-Levels bestimmt, welche somit synaptische Plastizit{\"a}t regeln. Da hang-Mutanten eine erh{\"o}hte Boutonanzahl aufweisen, f{\"u}hrte dies zu der Spekulation, daß der Ph{\"a}notyp dieser Mutanten m{\"o}glicherweise auf ver{\"a}nderte cAMPlevels zur{\"u}ckzuf{\"u}hren ist. Um dies zu {\"u}berpr{\"u}fen, wurde die Morphologie der neuromuskul{\"a}ren Synapsen von hangAE10-Larven mit denen von dnc1 verglichen, welche Defekte in der cAMP-Kaskade aufweisen. Einige Aspekte des Ph{\"a}notyps (z. B. die Zunahme der Boutonanzahl und das Verhaltnis von aktiven Zonen pro Boutonfl{\"a}che) sind sehr ¨ahnlich; jedoch unterscheiden sich die beiden Mutanten in anderen morphologischen Aspekten. Die Expression eines UAS-dnc-Transgens in hangover-Mutanten modifizierte den hang-Ph{\"a}notyp ebenfalls nicht. Auf der Basis der Ergebnisse dieser Arbeit wurde ein Modell f{\"u}r die Funktion von HANG erstellt, nach dem dieses Protein vermutlich am Isoform-spezifischen Spleißen bestimmter Transkripte beteiligt ist, deren Produkte f{\"u}r die synaptische Plastizit{\"a}t an der neuromuskul{\"a}ren Synapse ben{\"o}tigt werden.}, subject = {Taufliege}, language = {en} } @phdthesis{Schwaerzel2003, author = {Schw{\"a}rzel, Martin}, title = {Localizing engrams of olfactory memories in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-5065}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Zars and co-workers were able to localize an engram of aversive olfactory memory to the mushroom bodies of Drosophila (Zars et al., 2000). In this thesis, I followed up on this finding in two ways. Inspired by Zars et al. (2000), I first focused on the whether it would also be possible to localize memory extinction.While memory extinction is well established behaviorally, little is known about the underlying circuitry and molecular mechanisms. In extension to the findings by Zars et al (2000), I show that aversive olfactory memories remain localized to a subset of mushroom body Kenyon cells for up to 3 hours. Extinction localizes to the same set of Kenyon cells. This common localization suggests a model in which unreinforced presentations of a previously learned odorant intracellularly antagonizes the signaling cascades underlying memory formation. The second part also targets memory localization, but addresses appetitive memory. I show that memories for the same olfactory cue can be established through either sugar or electric shock reinforcement. Importantly, these memories localize to the same set of neurons within the mushroom body. Thus, the question becomes apparent how the same signal can be associated with different events. It is shown that two different monoamines are specificaly necessary for formation of either of these memories, dopamine in case of electric shock and octopamine in case of sugar memory, respectively. Taking the representation of the olfactory cue within the mushroom bodies into account, the data suggest that the two memory traces are located in the same Kenyon cells, but in separate subcellular domains, one modulated by dopamine, the other by octopamine. Taken together, this study takes two further steps in the search for the engram. (1) The result that in Drosophila olfactory learning several memories are organized within the same set of Kenyon cells is in contrast to the pessimism expressed by Lashley that is might not be possible to localize an engram. (2) Beyond localization, a possibible mechanism how several engrams about the same stimulus can be localized within the same neurons might be suggested by the models of subcellular organisation, as postulated in case of appetitive and aversive memory on the one hand and acquisition and extinction of aversive memory on the other hand.}, subject = {Taufliege}, language = {en} } @phdthesis{Solanki2013, author = {Solanki, Narendra}, title = {Novelty choice in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103219}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {This study explores novelty choice, a behavioral paradigm for the investigation of visual pattern recognition and learning of the fly Drosophila melanogaster in the flight simulator. Pattern recognition in novelty choice differs significantly from pattern recognition studied by heat conditioning, although both paradigms use the same test. Out of the four pattern parameters that the flies can learn in heat conditioning, novelty choice can be shown for height (horizontal bars differing in height), size and vertical compactness but not for oblique bars oriented at +/- 45°. Upright and inverted Ts [differing in their centers of gravity (CsOG) by 13°] that have been extensively used for heat conditioning experiments, do not elicit novelty choice. In contrast, horizontal bars differing in their CsOG by 13° do elicit novelty choice; so do the Ts after increasing their CsOG difference from 13° to 23°. This indicates that in the Ts the heights of the CsOG are not the only pattern parameters that matter for the novelty choice behavior. The novelty choice and heat conditioning paradigms are further differentiated using the gene rutabaga (rut) coding for a type 1 adenylyl cyclase. This protein had been shown to be involved in memory formation in the heat conditioning paradigm. Novelty choice is not affected by mutations in the rut gene. This is in line with the finding that dopamine, which in olfactory learning is known to regulate Rutabaga via the dopamine receptor Dumb in the mushroom bodies, is dispensable for novelty choice. It is concluded that in novelty choice the Rut cAMP pathway is not involved. Novelty choice requires short term working memory, as has been described in spatial orientation during locomotion. The protein S6KII that has been shown to be involved in visual orientation memory in walking flies is found here to be also required for novelty choice. As in heat conditioning the central complex plays a major role in novelty choice. The S6KII mutant phenotype for height can be rescued in some subsets of the ring neurons of the ellipsoid body. In addition the finding that the ellipsoid body mutants ebo678 and eboKS263 also show a mutant phenotype for height confirm the importance of ellipsoid body for height novelty choice. Interestingly some neurons in the F1 layer of the fan-shaped body are necessary for height novelty choice. Furthermore, different novelty choice phenotypes for different pattern parameters are found with and without mushroom bodies. Mushroom bodies are required in novelty choice for size but they are dispensable for height and vertical compactness. This special circuit requirement for the size parameter in novelty choice is found using various means of interference with mushroom body function during development or adulthood.}, subject = {Taufliege}, language = {en} } @phdthesis{Stark2011, author = {Stark, Felix}, title = {Funktionelle Untersuchungen zur Regulation der Protein Kinase CK2 durch Polyamine in Drosophila melanogaster und deren physiologische Bedeutung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57522}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Die heterotetramere Proteinkinase CK2 nimmt aufgrund der großen Anzahl und Diversit{\"a}t ihrer Substrate, sowie aufgrund ihrer Eigenschaft Signalwege miteinander zu vernetzen eine Sonderstellung innerhalb der Kinasen ein. CK2 beeinflusst Proliferation, Differenzierung und Apoptose, Prozesse an denen auch Polyamine und der MAPK-Signalweg beteiligt sind. Eine vor kurzem durchgef{\"u}hrte Arbeit beschreibt die Bindung von CK2 an das Ger{\"u}stprotein KSR und die Verst{\"a}rkung des MAPK-Signalwegs durch Phosphorylierung von Raf-Proteinen in Vertebraten. In dieser Arbeit konnte gezeigt werden, dass CK2 auch in Drosophila mit KSR interagiert und das einzige in Drosophila vorhandene Raf-Potein (DRaf) in vitro phosphoryliert. Im Gegensatz zur Phosphorylierung der humanen B-Raf und C-Raf Proteine an Serin 446 bzw. Serin 338 innerhalb der „negative charge regulatory region" (N-Region), f{\"u}hrten Kinasereaktionen und Massenspektrometrische Untersuchungen zur Identifizierung von Serin 11 als CK2 Phosphorylierungsstelle in DRaf, w{\"a}hrend ein zu Serin 446 in B-Raf {\"a}quivalentes Serin in der N-Region in Drosophila nicht durch CK2 phosphoryliert wird. Durch {\"U}berexpression von DRaf sowie von zwei DRaf-Varianten bei denen Serin 11 durch Alanin oder Aspartat substituiert wurde (DRafS11A und DRafS11D) konnte in Zellkulturexperimenten gezeigt werden, dass die Ladung an der Aminos{\"a}ureposition 11 die Funktion von DRaf beeinflusst, wobei eine negative Ladung an dieser Stelle zur Phosphorylierung und Aktivierung der Effektorkinase Erk f{\"u}hrt. Die Phosphorylierung durch CK2 ist unabh{\"a}ngig von regulatorischen Botenstoffen ("second messengers"), wird aber durch Bindung von Polyaminen moduliert. Intrazellul{\"a}re Polyamine entstammen zum grossen Teil dem zellul{\"a}ren Aminos{\"a}urekatabolismus und beeinflussen die Phosphorylierung von DRaf durch CK2 in vitro, wobei Spermin ein effizienter Inhibitor der Reaktion ist, w{\"a}hrend die Effekte von Putrescin und Spermidin gering sind. Auch in Drosophila Schneider S2 Zellen und in adulten weiblichen Fliegen hat Spermin einen inhibitorischen, CK2-abh{\"a}ngigen Effekt auf die Aktivierung von Erk. Ausserdem konnte gezeigt werden, dass Putrescin und Spermidin in der Lage sind die Aktivierung von Erk, im Vergleich zu Zellen die nur mit Spermin behandelt wurden, zu erh{\"o}hen. Das spricht daf{\"u}r, dass die Phosphorylierung von DRaf und die davon abh{\"a}ngige Aktivierung von Erk durch CK2 von der Menge und Relation der verschiedenen Polyamine zueinander abh{\"a}ngt. Die Ergebnisse dieser Arbeit lassen den Schluss zu, dass der Polyaminmetabolismus {\"u}ber CK2 mit dem MAPK-Signalweg verkn{\"u}pft ist. Nachdem Polyamine durch Aminos{\"a}urekatabolismus enstehen, kann auf diese Weise der MAPK-Signalweg in Abh{\"a}ngigkeit der Verf{\"u}gbarkeit zellul{\"a}rer Aminos{\"a}uren reguliert werden. Vorversuche zeigten eine Beeinflussung von Proliferation und Apoptose durch CK2 und Polyamine. Weitere Untersuchungen sind aber n{\"o}tig um spezifische Einfl{\"u}sse von Polyaminen und CK2 auf zellul{\"a}re Prozesse wie Proliferation, Differenzierung und Apoptose aufzudecken.}, subject = {Protein Kinase CK2}, language = {de} } @phdthesis{Thum2006, author = {Thum, Andreas Stephan}, title = {Sugar reward learning in Drosophila : neuronal circuits in Drosophila associative olfactory learning}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17930}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Genetic intervention in the fly Drosophila melanogaster has provided strong evidence that the mushroom bodies of the insect brain act as the seat of memory traces for aversive and appetitive olfactory learning (reviewed in Heisenberg, 2003). In flies, electroshock is mainly used as negative reinforcer. Unfortunately this fact complicates a comparative consideration with other inscets as most studies use sugar as positive reinforcer. For example, several lines of evidence from honeybee and moth have suggested another site, the antennal lobe, to house neuronal plasticity underlying appetitive olfactory memory (reviewed in Menzel, 2001; Daly et al., 2004). Because of this I focused my work mainly on appetitive olfactory learning. In the first part of my thesis, I used a novel genetic tool, the TARGET system (McGuire et al., 2003), which allows the temporally controlled expression of a given effector gene in a defined set of cells. Comparing effector genes which either block neurotransmission or ablate cells showed important differences, revealing that selection of the appropriate effector gene is critical for evaluating the function of neural circuits. In the second part, a new engram of olfactory memory in the Drosophila projection neurons is described by restoring Rutabaga adenlylate cyclase (rut-AC) activity specifically in these cells. Expression of wild-type rutabaga in the projection neurons fully rescued the defect in sugar reward memory, but not in aversive electric shock memory. No difference was found in the stability of the appetitive memories rescued either in projection neurons or Kenyon cells. In the third part of the thesis I tried to understand how the reinforcing signals for sugar reward are internally represented. In the bee Hammer (1993) described a single octopaminergic neuron - called VUMmx1 - that mediates the sugar stimulus in associative olfactory reward learning. Analysis of single VUM neurons in the fly (Selcho, 2006) identified a neuron with a similar morphology as the VUMmx1 neuron. As there is a mutant in Drosophila lacking the last enzymatic step in octopamine synthesis (Monastirioti et al., 1996), Tyramine beta Hydroxylase, I was able to show that local Tyramine beta Hydroxylase expression successfully rescued sugar reward learning. This allows to conclude that about 250 cells including the VUM cluster are sufficient for mediating the sugar reinforcement signal in the fly. The description of a VUMmx1 similar neuron and the involvement of the VUM cluster in mediating the octopaminergic sugar stimulus are the first steps in establishing a neuronal map for US processing in Drosophila. Based on this work several experiments are contrivable to reach this ultimate goal in the fly. Taken together, the described similiarities between Drosophila and honeybee regarding the memory organisation in MBs and PNs and the proposed internal representation of the sugar reward suggest an evolutionarily conserved mechanism for appetitive olfactory learning in insects.}, subject = {Taufliege}, language = {en} } @phdthesis{Tian2011, author = {Tian, Rui}, title = {Structural and functional organization of synaptic proteins in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57399}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Structural and functional modifications of synaptic connections ("synaptic plasticity") are believed to mediate learning and memory processes. Thus, molecular mechanisms of how synapses assemble in both structural and functional terms are relevant for our understanding of neuronal development as well as the processes of learning and memory. Synapses form by an asymmetric association of highly specialized membrane domains: at the presynaptic active zone transmitter filled vesicles fuse, while transmitter receptors at the opposite postsynaptic density sense this signal. By genetic analysis, matrix proteins of active zones from various families have been shown to be important for fast vesicle fusion, and were suggested to contribute to synapse stability and assembly. The Sigrist lab in collaboration with the Buchner lab previously had shown that the large scaffold protein Bruchpilot (Brp) is essential for both the structural and functional integrity of active zones and for synaptic plasticity in Drosophila melanogaster. The work described in this thesis investigated several candidate proteins which appear to be involved in preand postsynaptic function, as summarized in the following: (1) DREP-2 (DEF45 related protein-2) had been found by co-immunoprecipitations with anti-Brp antibodies by Dr. Manuela Schmidt (unpublished data). Mutants and antibodies for the further study of DREP- 2 were generated in this thesis. Yeast two hybrid results suggest that DREP-2 might interact with dynein light chain 2, while in vivo imaging indicates that DREP-2 might be involved in bidirectional axonal transport. (2) Coimmunoprecipitation and pull down experiments suggested that the ARFGAP [ADP-ribosylation factor (ARF)-directed GTPase activating protein (GAP)] protein GIT (G-protein coupled receptor kinase interacting protein) could interact with the endocytosis associated molecule Stoned B (StnB). Mutants in the dgit gene showed an accumulation of large size vesicles, membrane intermediates and decreased vesicle density at the 3rd instar larval neuromuscular junction (NMJ) by electron microscopy (EM). The phenotypes accumulation of large size vesicles and membrane intermediates could be rescued partially by expression of Drosophila GIT (DGIT) or human GIT in dgit mutant background. Furthermore, by immunofluorescence the dgit mutant shows specifically decreased levels of StnB, which could be restored partially by the expression of DGIT. These results strongly support the suggestion that DGIT interacts with StnB, which is involved in the regulation of vesicle size, endocytosis or recycling of synaptic vesicles (SVs). Furthermore, the dgit mutants also showed signs of a mislocalization of the presynaptic protein Brp relative to the postsynaptic protein GluRIID, which could be rescued by expression of DGIT or human GIT in the dgit mutant background, but not by StnB. These results suggest that GIT on one hand executes roles in the regulation of synaptic vesicle endocytosis, but potentially also has structural roles for synapse assembly (3) Djm-1 is a candidate locus to mediate mental retardation in human patients when it is mutated. As a first step towards an understanding of the mechanistic role of DJM-1, Drosophila genetics were used to address DJM-1 function. So far, however, the djm-1 mutant generated in this thesis did not show a nervous system phenotype.}, subject = {Taufliege}, language = {en} } @phdthesis{Triphan2009, author = {Triphan, Tilman}, title = {The Central Control of Gap Climbing Behaviour in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-43666}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {In this work, a behavioural analysis of different mutants of the fruit fly Drosophila melanogaster has been carried out. Primarily, the gap climbing behaviour (Pick \& Strauss, 2005) has been assayed as it lends itself for the investigation of decision making processes and the neuronal basis of adaptive behaviour. Furthermore it shows how basic motor actions can be combined into a complex motor behaviour. Thanks to the neurogenetic methods, Drosophila melanogaster has become an ideal study object for neurobiological questions. Two different modules of climbing control have been examined in detail. For the decision making, the mutant climbing sisyphus was analysed. While wild-type flies adapt the initiation of climbing behaviour to the width of the gap and the probability for a successful transition. climbing sisyphus flies initiate climbing behaviour even at clearly insurmountable gap widths. The climbing success itself is not improved in comparison to the wild-type siblings. The mutant climbing sisyphus is a rare example of a hyperactive mutant besides many mutants that show a reduced activity. Basic capabilities in vision have been tested in an optomotor and a distance-estimation paradigm. Since they are not affected, a defect in decision making is most probably the cause of this behavioural aberration. A second module of climbing control is keeping up orientation towards the opposite side of the gap during the execution of climbing behaviour. Mutants with a structural defect in the protocerebral bridge show abnormal climbing behaviour. During the climbing attempt, the longitudinal body axis does not necessarily point into the direction of the opposite side. Instead, many climbing events are initiated at the side edge of the walking block into the void and have no chance to ever succeed. The analysed mutants are not blind. In one of the mutants, tay bridge1 (tay1) a partial rescue attempt used to map the function in the brain succeeded such that the state of the bridge was restored. That way, a visual targeting mechanism has been activated, allowing the flies to target the opposite side. When the visibility of the opposing side was reduced, the rescued flies went back to a tay1 level of directional scatter. The results are in accord with the idea that the bridge is a central constituent of the visual targeting mechanism. The tay1 mutant was also analysed in other behavioural paradigms. A reduction in walking speed and walking activity in this mutant could be rescued by the expression of UAS-tay under the control of the 007Y-GAL4 driver line, which concomitantly restores the structure of the protocerebral bridge. The separation of bridge functions from functions of other parts of the brain of tay1 was accomplished by rescuing the reduced optomotor compensation in tay1 by the mb247-GAL4>UAS-tay driver. While still having a tay1-like protocerebral bridge, mb247-GAL4 rescue flies are able to compensate at wild-type levels. An intact compensation is not depended on the tay expression in the mushroom bodies, as mushroom body ablated flies with a tay1 background and expression of UAS-tay under the control of mb247-GAL4 show wild-type behaviour as well. The most likely substrate for the function are currently unidentified neurons in the fan-shaped body, that can be stained with 007Y-GAL4 and mb247-GAL4 as well.}, subject = {Taufliege}, language = {en} } @phdthesis{Tschaepe2002, author = {Tsch{\"a}pe, Jakob-Andreas}, title = {Molekulare und funktionelle Analyse der Drosophila-Mutante l{\"o}chrig}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-2963}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Neurodegenerative Erkrankungen des Menschen sind eines der Hauptfelder molekularer neurobiologischer Grundlagenforschung. Um generell molekulare, komplizierte Vorg{\"a}nge in vivo untersuchen zu k{\"o}nnen, nutzt man seit geraumer Zeit Modellorganismen wie Caenorhabditis elegans oder Drosophila melanogaster. In der vorliegenden Arbeit wird die Drosophila-Neurodegenerationsmutante loe (l{\"o}chrig) beschrieben, die als Modell f{\"u}r die Rolle des Cholesterinhaushalts im Bezug auf Neurodegeneration herangezogen werden kann. Die Fliegen dieser Mutante zeigen stark progressive, altersabh{\"a}ngige Degeneration von Neuronen, dabei unterlaufen diese Nervenzellen einen nekrotischenZelltod. Verantwortlich f{\"u}r diese Mutation ist die Insertion eines P-Elementes in einem Intron des Drosophila-g-5'-AMP-aktivierten Proteinkinase- (AMPK)-Gens. Die verschiedenen Spleißprodukte des loe Gens kodieren f{\"u}r die regulatorische g-Untereinheit des AMPK-Komplexes, der , aktiviert durch 5'AMP, energieintensive Prozesse negativ reguliert. Die Spleißform loeI ist durch die P-Element-Insertion betroffen, Anteile des P-Elementes werden in das loeI-Transkript hineingespleißt. Eine neuronale Expression von loeI im loe-Hintergrund f{\"u}hrt zur Revertierung des loe-Ph{\"a}notypes. Mit der Expression anderer Spleißformen kann dieser Effekt nicht erzielt werden. Das LOE I-Protein birgt in seinem N-Terminus eine Reihe m{\"o}glicher Interaktionstellen mit anderen Proteinen, die den AMPK-Komplex in einen Kontext mit den Proteinen der APP (Amyloid Precursor Proteins) ?Familie stellen oder z. B. Interaktionen mit dem Cytoskelett herstellen k{\"o}nnen. Eine molekulare Interaktion mit NiPSNAP, einem Protein, dass vermutlich eine Rolle im Vesikelverkehr spielt, konnte nachgewiesen werden. Ein direktes humanes Homolog von LOE I ist nicht bekannt, wohlgleich es im Menschen drei AMPK-g-Untereinheiten gibt, von denen zwei {\"a}hnliche Funktionen {\"u}bernehmen k{\"o}nnten wie LOE I. Die loe-Mutante interagiert genetisch mit der Mutante clb ? columbus, die einen Defekt im Gen der HMG-CoA-Reduktase tr{\"a}gt. Dieses Emzym ist das Schl{\"u}sselenzym der Cholesterinbiosynthese. Die Art der Interaktion belegt eine negative Regulierung der HMG-CoA-Reduktase durch die AMPK. So schw{\"a}cht die clb-Mutation den neurodegenerativen loe-Ph{\"a}notyp ab, eine {\"U}berexpression von clb verst{\"a}rkt diesen. Eine Verminderung der Neurodegeneration kann auch mit Medikamenten erreicht werden: Statine, potente Hemmer der HMG-COA-Reduktase, reprimieren deutlich den loe-Ph{\"a}notyp. In loe ist der Cholesterinester-Spiegel auf 40\% abgesenkt. Eine weitere genetische Interaktion von loe konnte nachgewiesen werden: Die Mutante f{\"u}r das Drosophila-Homolog von APP (Appl) verst{\"a}rkt den neurodegenerativen Ph{\"a}notyp in loe stark, wogegen die Appl-Mutante selbst keine neurodegenerativen Defekte aufweist. Dar{\"u}berhinaus zeigt die Doppelmutante Defekte, die keine der Einzelmutanten aufweist: Sterilit{\"a}t oder eine extrem kurze Lebensdauer von nur 3-4 Tagen. Diese Interaktion ließ sich auf molekularer Ebene charakterisieren. Die proteolytische Prozessierung von APPL durch Sekretasen ist in loe alteriert. In der vorliegenden Arbeit konnte gezeigt werden, dass durch die loe-Mutation die b-Sekretase aus Vertebraten (BACE) und eine bisher noch nicht beschriebene endogene Sekretase aus Drosophila negativ beeiflusst werden. Ein AMPK-Komplex mit LOE I als g-Untereinheit scheint {\"u}ber den Cholesterinester-Spiegel die Aktivit{\"a}t einer speziellen Untergruppe der Sekretasen zu beeinflussen. Die Missfunktion dieser Sekretasen ist ein kritischer Punkt in der Pathogenese der Alzheimer-Krankheit. Die loe-Mutation wirft neues Licht auf die bekannten Verbindungen zwischen Cholesterin-Stoffwechsel, Vesikelverkehr und Prozessierung von APP(L). Mit den großen M{\"o}glichkeiten, die die Drosophila-Genetik bietet, stellt diese neue Mutante ein weiteres Werkzeug zur Charakterisierung von Therapie-Ans{\"a}tzen f{\"u}r die Alzheimer-Kankheit dar. Die vorliegende Arbeit belegt um ein weiteres Mal, dass Drosophila ein potentes Modellsystem zur Untersuchung humaner, neurodegenerativer Erkrankungen wie Chorea Huntington, Parkinson oder der Alzheimer Krankheit ist.}, subject = {Taufliege}, language = {de} } @phdthesis{Tyagi2012, author = {Tyagi, Anu}, title = {Role of SWI/SNF in regulating pre-mRNA processing in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72253}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {ATP dependent chromatin remodeling complexes are multifactorial complexes that utilize the energy of ATP to rearrange the chromatin structure. The changes in chromatin structure lead to either increased or decreased DNA accessibility. SWI/SNF is one of such complex. The SWI/SNF complex is involved in both transcription activation and transcription repression. The ATPase subunit of SWI/SNF is called SWI2/SNF2 in yeast and Brahma, Brm, in Drosophila melanogaster. In mammals there are two paralogs of the ATPase subunit, Brm and Brg1. Recent studies have shown that the human Brm is involved in the regulation of alternative splicing. The aim of this study was to investigate the role of Brm in pre-mRNA processing. The model systems used were Chironomus tentans, well suited for in situ studies and D. melanogaster, known for its full genome information. Immunofluorescent staining of the polytene chromosome indicated that Brm protein of C. tentans, ctBrm, is associated with several gene loci including the Balbiani ring (BR) puffs. Mapping the distribution of ctBrm along the BR genes by both immuno-electron microscopy and chromatin immunoprecipitation showed that ctBrm is widely distributed along the BR genes. The results also show that a fraction of ctBrm is associated with the nascent BR pre-mRNP. Biochemical fractionation experiments confirmed the association of Brm with the RNP fractions, not only in C. tentans but also in D. melanogaster and in HeLa cells. Microarray hybridization experiments performed on S2 cells depleted of either dBrm or other SWI/SNF subunits show that Brm affects alternative splicing and 3´ end formation. These results indicated that BRM affects pre-mRNA processing as a component of SWI/SNF complexes. 1}, subject = {Taufliege}, language = {en} } @phdthesis{Voeller2009, author = {V{\"o}ller, Thomas}, title = {Visualisierung und Manipulation neuronaler Aktivit{\"a}ten im Gehirn von Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-35589}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {In dieser Arbeit wurden zwei Techniken zur Analyse der Funktion diverser Neuronen in Drosophila melanogaster angewendet. Im ersten Teil wurde mittels in-vivo Calcium Imaging Technik unter Verwendung des Calciumsensors Cameleon neuronale Aktivit{\"a}t entlang des olfaktorischen Signalweges registriert. Hierbei wurde die neuronale Repr{\"a}sentation der Duftidentit{\"a}t und der Duftintensit{\"a}t untersucht. In Bezug auf diese Fragestellung wurde die Datenverarbeitung und Datenanalyse weiterentwickelt und standardisiert. Die Experimente f{\"u}hrten zu dem Ergebnis, dass duftspezifische Aktivit{\"a}tsmuster auf der Ebene des Antennallobus sehr gut unterscheidbar sind. Manche Aktivit{\"a}tsmuster der pr{\"a}sentierten D{\"u}fte zeigten interessanterweise einen hohen {\"A}hnlichkeitsgrad, wohingegen andere un{\"a}hnlich waren. In h{\"o}heren Gehirnzentren wie den Orten der terminalen Aborisationen der Projektionsneurone oder den Pilzk{\"o}rper Kenyonzellen liegt eine starke Variabilit{\"a}t der duftevozierten Aktivit{\"a}tsmuster vor, was generelle Interpretationen unm{\"o}glich macht und h{\"o}chstens Vergleiche innerhalb eines Individuums zul{\"a}sst. Des Weiteren konnte gezeigt werden, dass die Calciumsignale in den Rezeptorneuronen sowie pr{\"a}- und postsynaptisch in den Projektionsneuronen bei Erh{\"o}hung der Konzentration der verschiedenen pr{\"a}sentierten D{\"u}fte {\"u}ber einen Bereich von mindestens drei Gr{\"o}ßenordnungen ansteigen. In den Kenyonzellen des Pilzk{\"o}rper-Calyx und der Pilzk{\"o}rper-Loben ist diese Konzentrationsabh{\"a}ngigkeit weniger deutlich ausgepr{\"a}gt und im Falle der Loben nur f{\"u}r bestimmte D{\"u}fte detektierbar. Eine Best{\"a}tigung des postulierten „sparsed code" der Duftpr{\"a}sentation in den Pilzk{\"o}rpern konnte in dieser Arbeit nicht erbracht werden, was m{\"o}glicherweise daran liegt, dass eine Einzelzellaufl{\"o}sung mit der verwendeten Technik nicht erreicht werden kann. Im zweiten Teil dieser Arbeit sollte durch die Nutzung des lichtabh{\"a}ngigen Kationenkanals Channelrhodopsin-2 der Frage nachgegangen werden, ob bestimmte modulatorische Neurone die verst{\"a}rkenden Eigenschaften eines bestrafenden oder belohnenden Stimulus vermitteln. Die lichtinduzierte Aktivierung von Channelrhodopsin-2 exprimierenden dopaminergen Neuronen als Ersatz f{\"u}r einen aversiven Reiz f{\"u}hrte bei einer olfaktorischen Konditionierung bei Larven zur Bildung eines aversiven assoziativen Ged{\"a}chtnisses. Im Gegensatz dazu induzierte die Aktivierung von Channelrhodopsin-2 in oktopaminergen/tyraminergen Neuronen als Ersatz f{\"u}r einen appetitiven Reiz ein appetitives assoziatives Ged{\"a}chtnis. Diese Ergebnisse zeigen, dass dopaminerge Neurone bei Larven aversives Duftlernen, oktopaminerge/tyraminerge Neurone dagegen appetitives Duftlernen induzieren.}, subject = {Taufliege}, language = {de} } @phdthesis{Wagh2005, author = {Wagh, Dhananjay Anil}, title = {"Bruchpilot" -molecular and functional characterization of a novel active zone protein at the Drosophila synapse}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14989}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Chemical neurotransmission is a complex process of central importance for nervous system function. It is thought to be mediated by the orchestration of hundreds of proteins for its successful execution. Several synaptic proteins have been shown to be relevant for neurotransmission and many of them are highly conserved during evolution- suggesting a universal mechanism for neurotransmission. This process has checkpoints at various places like, neurotransmitter uptake into the vesicles, relocation of the vesicles to the vicinity of calcium channels in order to facilitate Ca2+ induced release thereby modulating the fusion probability, formation of a fusion pore to release the neurotransmitter and finally reuptake of the vesicles by endocytosis. Each of these checkpoints has now become a special area of study and maintains its own importance for the understanding of the overall process. Ca2+ induced release occurs at specialized membrane structures at the synapse known as the active zones. These are highly ordered electron dense grids and are composed of several proteins which assist the synaptic vesicles in relocating in the vicinity of Ca2+ channels thereby increasing their fusion probability and then bringing about the vesicular fusion itself. All the protein modules needed for these processes are thought to be held in tight arrays at the active zones, and the functions of a few have been characterized so far at the vertebrate active zones. Our group is primarily interested in characterizing the molecular architecture of the Drosophila synapse. Due to its powerful genetics and well-established behavioural assays Drosophila is an excellent system to investigate neuronal functioning. Monoclonal antibodies (MABs) from a hybridoma library against Drosophila brain are routinely used to detect novel proteins in the brain in a reverse genetic approach. Upon identification of the protein its encoding genetic locus is characterized and a detailed investigation of its function is initiated. This approach has been particularly useful to detect synaptic proteins, which may go undetected in a forward genetic approach due to lack of an observable phenotype. Proteins like CSP, Synapsin and Sap47 have been identified and characterized using this approach so far. MAB nc82 has been one of the shortlisted antibodies from the same library and is widely used as a general neuropil marker due to the relative transparency of immunohistochemical whole mount staining obtained with this antibody. A careful observation of double stainings at the larval neuromuscular junctions with MAB nc82 and other pre and post-synaptic markers strongly suggested an active zone localization of the nc82 antigen. Synaptic architecture is well characterized in Drosophila at the ultrastructural level. However, molecular details for many synaptic components and especially for the active zone are almost entirely unknown. A possible localization at the active zone for the nc82 antigen served as the motivation to initiate its biochemical characterization and the identification of the encoding gene. In the present thesis it is shown by 2-D gel analysis and mass spectrometry that the nc82 antigen is a novel active zone protein encoded by a complex genetic locus on chromosome 2R. By RT-PCR exons from three open reading frames previously annotated as separate genes are demonstrated to give rise to a transcript of at least 5.5 kb. Northern blots produce a prominent signal of 11 kb and a weak signal of 2 kb. The protein encoded by the 5.5 kb transcript is highly conserved amongst insects and has at its N-terminus significant homology to the previously described vertebrate active zone protein ELKS/ERC/CAST. Bioinformatic analysis predicts coiled-coil domains spread all over the sequence and strongly suggest a function involved in organizing or maintaining the structure of the active zone. The large C-terminal region is highly conserved amongst the insects but has no clear homologues in veretebrates. For a functional analysis of this protein transgenic flies expressing RNAi constructs under the control of the Gal4 regulated enhancer UAS were kindly provided by the collaborating group of S.Sigrist (G\&\#1616;ttingen). A strong pan-neuronal knockdown of the nc82 antigen by transgenic RNAi expression leads to embryonic lethality. A relatively weaker RNAi expression results in behavioural deficits in adult flies including unstable flight and impaired walking behavior. Due to this peculiar phenotype as observed in the first knockdown studies the gene was named "bruchpilot" (brp) encoding the protein "Bruchpilot (BRP)" (German for crash pilot). A pan-neuronal as well as retina specific downregulation of this protein results in loss of ON and OFF transients in ERG recordings indicating dysfunctional synapses. Retina specific downregulation also shows severely impaired optomotor behaviour. Finally, at an ultrastructural level BRP downregulation seems to impair the formation of the characteristic T-shaped synaptic ribbons at the active zones without significantly altering the overall synaptic architecture (in collaboration with E.Asan). Vertebrate active zone protein Bassoon is known to be involved in attaching the synaptic ribbons to the active zones as an adapter between active zone proteins RIBEYE and ERC/CAST. A mutation in Bassoon results in a floating synaptic ribbon phenotype. No protein homologous to Bassoon has been observed in Drosophila. BRP downregulation also results in absence of attached synaptic ribbons at the active zones. This invites the speculation of an adapter like function for BRP in Drosophila. However, while Bassoon mutant mice are viable, BRP deficit in addition to the structural phenotype also results in severe behavioural and physiological anomalies and even stronger downregulation causes embryonic lethality. This therefore suggests an additional and even more important role for BRP in development and normal functioning of synapses in Drosophila and also in other insects. However, how BRP regulates synaptic transmission and which other proteins are involved in this BRP dependant pathway remains to be investigated. Such studies certainly will attract prominent attention in the future.}, subject = {Taufliege}, language = {en} } @phdthesis{Wagner2003, author = {Wagner, Nicole}, title = {Charakterisierung der Kernmembranproteine Lamin-B-Rezeptor und Bocksbeutel von Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7245}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Funktionelle Charakterisierung neuer Proteine der inneren Kernmembran von Drosophila melanogaster: Drosophila Lamin B Rezeptor (dLBR), ein integrales Membranprotein der inneren Kernmembran; Bocksbeutel alpha und Bocksbeutel beta, LEM-Dom{\"a}nen Proteine sowie deren potentiellen Interaktionspartner Drosophila Barrier-to-Autointegration Factor (dBAF).}, subject = {Taufliege}, language = {de} } @phdthesis{Yang2015, author = {Yang, Zhenghong}, title = {A systematic study of learned helplessness in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112424}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The learned helplessness phenomenon is a specific animal behavior induced by prior exposure to uncontrollable aversive stimuli. It was first found by Seligman and Maier (1967) in dogs and then has been reported in many other species, e.g. in rats (Vollmayr and Henn, 2001), in goldfishes (Padilla, 1970), in cockroaches (Brown, 1988) and also in fruit flies (Brown, 1996; Bertolucci, 2008). However, the learned helplessness effect in fruit flies (Drosophila melanogaster) has not been studied in detail. Thus, in this doctoral study, we investigated systematically learned helplessness behavior of Drosophila for the first time. Three groups of flies were tested in heatbox. Control group was in the chambers experiencing constant, mild temperature. Second group, master flies were punished in their chambers by being heated if they stopped walking for 0.9s. The heat pulses ended as soon as they resumed walking again. A third group, the yoked fly, was in their chambers at the same time. However, their behavior didn't affect anything: yoked flies were heated whenever master flies did, with same timing and durations. After certain amount of heating events, yoked flies associated their own behavior with the uncontrollability of the environment. They suppressed their innate responses such as reducing their walking time and walking speed; making longer escape latencies and less turning around behavior under heat pulses. Even after the conditioning phase, yoked flies showed lower activity level than master and control flies. Interestingly, we have also observed sex dimorphisms in flies. Male flies expressed learned helplessness not like female flies. Differences between master and yoked flies were smaller in male than in female flies. Another interesting finding was that prolonged or even repetition of training phases didn't enhance learned helplessness effect in flies. Furthermore, we investigated serotonergic and dopaminergic nervous systems in learned helplessness. Using genetic and pharmacological manipulations, we altered the levels of serotonin and dopamine in flies' central nervous system. Female flies with reduced serotonin concentration didn't show helpless behavior, while the learned helplessness effect in male flies seems not to be affected by a reduction of serotonin. Flies with lower dopamine level do not display the learned helplessness effect in the test phase, suggesting that with low dopamine the motivational change in learned helplessness in Drosophila may decline faster than with a normal dopamine level.}, subject = {Taufliege}, language = {en} }