@unpublished{Dandekar2024, author = {Dandekar, Thomas}, title = {How do qubits interact? Implications for fundamental physics}, doi = {10.25972/OPUS-35743}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357435}, pages = {42}, year = {2024}, abstract = {Proteins fold in water and achieve a clear structure despite a huge parameter space. Inside a (protein) crystal you have everywhere the same symmetries as there is everywhere the same unit cell. We apply this to qubit interactions to do fundamental physics: We modify cosmological inflation: we replace the big bang by a condensation event in an eternal all-encompassing ocean of free qubits. Rare interactions of qubits in the ocean provide a nucleus or seed for a new universe (domain), as the qubits become decoherent and freeze-out into defined bit ensembles. Next, we replace inflation by a crystallization event triggered by the nucleus of interacting qubits to which rapidly more and more qubits attach (like in everyday crystal growth). The crystal unit cell guarantees same symmetries (and laws of nature) everywhere inside the crystal, no inflation scenario is needed. Interacting qubits solidify, quantum entropy decreases in the crystal, but increases outside in the ocean. The interacting qubits form a rapidly growing domain where the n**m states become separated ensemble states, rising long-range forces stop ultimately further growth. After this very early modified steps, standard cosmology with the hot fireball model takes over. Our theory agrees well with lack of inflation traces in cosmic background measurements. Applying the Hurwitz theorem to qubits we prove that initiation of qubit interactions can only be 1,2,4 or 8-dimensional (agrees with E8 symmetry of our universe). Repulsive forces at ultrashort distances result from quantization, long-range forces limit crystal growth. The phase space of the crystal agrees with the standard model of the basic four forces for n quanta. It includes all possible ensemble combinations of their quantum states m, a total of n**m states. We describe a six-bit-ensemble toy model of qubit interaction and the repulsive forces of qubits for ultra-short distances. Neighbor states reach according to transition possibilities (S-matrix) with emergent time from entropic ensemble gradients. However, in our four dimensions there is only one bit overlap to neighbor states left (almost solid, only below Planck´s quantum is liquidity left). The E8 symmetry of heterotic string theory has six curled-up, small dimensions. These keep the qubit crystal together and never expand. We give energy estimates for free qubits vs bound qubits, misplacements in the qubit crystal and entropy increase during qubit crystal formation. Implications are fundamental answers, e.g. why there is fine-tuning for life-friendliness, why there is string theory with rolled-up dimension and so many free parameters. We explain by cosmological crystallization instead of inflation the early creation of large-scale structure of voids and filaments, supercluster formation, galaxy formation, and the dominance of matter: the unit cell of our crystal universe has a matter handedness avoiding anti-matter. Importantly, crystals come and go in the qubit ocean. This selects for the ability to lay seeds for new crystals, for self-organization and life-friendliness. Vacuum energy gets appropriate low inside the crystal by its qubit binding energy, outside it is 10**20 higher. Scalar fields for color interaction/confinement and gravity could be derived from the qubit-interaction field.}, language = {en} } @unpublished{Dandekar2023, author = {Dandekar, Thomas}, title = {A modified inflation cosmology relying on qubit-crystallization: rare qubit interactions trigger qubit ensemble growth and crystallization into "real" bit-ensembles and emergent time}, doi = {10.25972/OPUS-32177}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321777}, pages = {42}, year = {2023}, abstract = {In a modified inflation scenario we replace the "big bang" by a condensation event in an eternal all-compassing big ocean of free qubits in our modified cosmology. Interactions of qubits in the qubit ocean are rare. If they happen, they provide a nucleus for a new universe as the qubits become decoherent and freeze-out into defined bit ensembles. Second, we replace inflation by a crystallization event triggered by the nucleus of interacting qubits to which rapidly more and more qubits attach (like in everyday crystal growth) - the crystal unit cell guarantees same symmetries everywhere. Hence, the textbook inflation scenario to explain the same laws of nature in our domain is replaced by the crystal unit cell of the crystal formed. We give here only the perspective or outline of this modified inflation theory, as the detailed mathematical physics behind this has still to be formulated and described. Interacting qubits solidify, quantum entropy decreases (but increases in the ocean around). The interacting qubits form a rapidly growing domain where the n**m states become separated ensemble states, rising long-range forces stop ultimately further growth. After that very early events, standard cosmology with the hot fireball model takes over. Our theory agrees well with lack of inflation traces in cosmic background measurements, but more importantly can explain well by such a type of cosmological crystallization instead of inflation the early creation of large-scale structure of voids and filaments, supercluster formation, galaxy formation, and the dominance of matter: no annihilation of antimatter necessary, rather the unit cell of our crystal universe has a matter handedness avoiding anti-matter. We prove a triggering of qubit interactions can only be 1,2,4 or 8-dimensional (agrees with E8 symmetry of our universe). Repulsive forces at ultrashort distances result from quantization, long-range forces limit crystal growth. Crystals come and go in the qubit ocean. This selects for the ability to lay seeds for new crystals, for self-organization and life-friendliness. The phase space of the crystal agrees with the standard model of the basic four forces for n quanta. It includes all possible ensemble combinations of their quantum states m, a total of n**m states. Neighbor states reach according to transition possibilities (S-matrix) with emergent time from entropic ensemble gradients. However, this means that in our four dimensions there is only one bit overlap to neighbor states left (almost solid, only below h dash liquidity left). However, the E8 symmetry of heterotic string theory has six rolled-up, small dimensions which help to keep the qubit crystal together and will never expand. Finally, we give first energy estimates for free qubits vs bound qubits, misplacements in the qubit crystal and entropy increase during qubit decoherence / crystal formation. Scalar fields for color interaction and gravity derive from the permeating qubit-interaction field in the crystal. Hence, vacuum energy gets low inside the qubit crystal. Condensed mathematics may advantageously help to model free (many states denote the same qubit) and bound qubits in phase space.}, language = {en} } @article{KaltdorfBreitenbachKarletal.2023, author = {Kaltdorf, Martin and Breitenbach, Tim and Karl, Stefan and Fuchs, Maximilian and Kessie, David Komla and Psota, Eric and Prelog, Martina and Sarukhanyan, Edita and Ebert, Regina and Jakob, Franz and Dandekar, Gudrun and Naseem, Muhammad and Liang, Chunguang and Dandekar, Thomas}, title = {Software JimenaE allows efficient dynamic simulations of Boolean networks, centrality and system state analysis}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-022-27098-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313303}, year = {2023}, abstract = {The signal modelling framework JimenaE simulates dynamically Boolean networks. In contrast to SQUAD, there is systematic and not just heuristic calculation of all system states. These specific features are not present in CellNetAnalyzer and BoolNet. JimenaE is an expert extension of Jimena, with new optimized code, network conversion into different formats, rapid convergence both for system state calculation as well as for all three network centralities. It allows higher accuracy in determining network states and allows to dissect networks and identification of network control type and amount for each protein with high accuracy. Biological examples demonstrate this: (i) High plasticity of mesenchymal stromal cells for differentiation into chondrocytes, osteoblasts and adipocytes and differentiation-specific network control focusses on wnt-, TGF-beta and PPAR-gamma signaling. JimenaE allows to study individual proteins, removal or adding interactions (or autocrine loops) and accurately quantifies effects as well as number of system states. (ii) Dynamical modelling of cell-cell interactions of plant Arapidopsis thaliana against Pseudomonas syringae DC3000: We analyze for the first time the pathogen perspective and its interaction with the host. We next provide a detailed analysis on how plant hormonal regulation stimulates specific proteins and who and which protein has which type and amount of network control including a detailed heatmap of the A.thaliana response distinguishing between two states of the immune response. (iii) In an immune response network of dendritic cells confronted with Aspergillus fumigatus, JimenaE calculates now accurately the specific values for centralities and protein-specific network control including chemokine and pattern recognition receptors.}, language = {en} } @unpublished{Dandekar2023, author = {Dandekar, Thomas}, title = {Analysing the phase space of the standard model and its basic four forces from a qubit phase transition perspective: implications for large-scale structure generation and early cosmological events}, doi = {10.25972/OPUS-29858}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298580}, pages = {42}, year = {2023}, abstract = {The phase space for the standard model of the basic four forces for n quanta includes all possible ensemble combinations of their quantum states m, a total of n**m states. Neighbor states reach according to transition possibilities (S-matrix) with emergent time from entropic ensemble gradients. We replace the "big bang" by a condensation event (interacting qubits become decoherent) and inflation by a crystallization event - the crystal unit cell guarantees same symmetries everywhere. Interacting qubits solidify and form a rapidly growing domain where the n**m states become separated ensemble states, rising long-range forces stop ultimately further growth. After that very early events, standard cosmology with the hot fireball model takes over. Our theory agrees well with lack of inflation traces in cosmic background measurements, large-scale structure of voids and filaments, supercluster formation, galaxy formation, dominance of matter and life-friendliness. We prove qubit interactions to be 1,2,4 or 8 dimensional (agrees with E8 symmetry of our universe). Repulsive forces at ultrashort distances result from quantization, long-range forces limit crystal growth. Crystals come and go in the qubit ocean. This selects for the ability to lay seeds for new crystals, for self-organization and life-friendliness. We give energy estimates for free qubits vs bound qubits, misplacements in the qubit crystal and entropy increase during qubit decoherence / crystal formation. Scalar fields for color interaction and gravity derive from the permeating qubit-interaction field. Hence, vacuum energy gets low only inside the qubit crystal. Condensed mathematics may advantageously model free / bound qubits in phase space.}, language = {en} } @article{HanRenMamtiminetal.2023, author = {Han, Chao and Ren, Pengxuan and Mamtimin, Medina and Kruk, Linus and Sarukhanyan, Edita and Li, Chenyu and Anders, Hans-Joachim and Dandekar, Thomas and Krueger, Irena and Elvers, Margitta and Goebel, Silvia and Adler, Kristin and M{\"u}nch, G{\"o}tz and Gudermann, Thomas and Braun, Attila and Mammadova-Bach, Elmina}, title = {Minimal collagen-binding epitope of glycoprotein VI in human and mouse platelets}, series = {Biomedicines}, volume = {11}, journal = {Biomedicines}, number = {2}, issn = {2227-9059}, doi = {10.3390/biomedicines11020423}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304148}, year = {2023}, abstract = {Glycoprotein VI (GPVI) is a platelet-specific receptor for collagen and fibrin, regulating important platelet functions such as platelet adhesion and thrombus growth. Although the blockade of GPVI function is widely recognized as a potent anti-thrombotic approach, there are limited studies focused on site-specific targeting of GPVI. Using computational modeling and bioinformatics, we analyzed collagen- and CRP-binding surfaces of GPVI monomers and dimers, and compared the interacting surfaces with other mammalian GPVI isoforms. We could predict a minimal collagen-binding epitope of GPVI dimer and designed an EA-20 antibody that recognizes a linear epitope of this surface. Using platelets and whole blood samples donated from wild-type and humanized GPVI transgenic mice and also humans, our experimental results show that the EA-20 antibody inhibits platelet adhesion and aggregation in response to collagen and CRP, but not to fibrin. The EA-20 antibody also prevents thrombus formation in whole blood, on the collagen-coated surface, in arterial flow conditions. We also show that EA-20 does not influence GPVI clustering or receptor shedding. Therefore, we propose that blockade of this minimal collagen-binding epitope of GPVI with the EA-20 antibody could represent a new anti-thrombotic approach by inhibiting specific interactions between GPVI and the collagen matrix.}, language = {en} } @unpublished{Dandekar2023, author = {Dandekar, Thomas}, title = {Protein folding and crystallization applied to qubit interactions and fundamental physics yields a modified inflation model for cosmology}, doi = {10.25972/OPUS-34615}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346156}, pages = {42}, year = {2023}, abstract = {Protein folding achieves a clear solution structure in a huge parameter space (the so-called protein folding problem). Proteins fold in water, and get by this a highly ordered structure. Finally, inside a protein crystal for structure resolution, you have everywhere the same symmetries as there is everywhere the same unit cell. We apply this to qubit interactions to do fundamental physics: in a modified cosmology, we replace the big bang by a condensation event in an eternal all-encompassing ocean of free qubits. Interactions of qubits in the qubit ocean are quite rare but provide a nucleus or seed for a new universe (domain) as the qubits become decoherent and freeze-out into defined bit ensembles. Second, we replace inflation by a crystallization event triggered by the nucleus of interacting qubits to which rapidly more and more qubits attach (like in everyday crystal growth). The crystal unit cell guarantees same symmetries everywhere inside the crystal. The textbook inflation scenario to explain the same laws of nature in our domain is replaced by the unit cell of the crystal formed. Interacting qubits solidify, quantum entropy decreases (but increases in the ocean around). In a modified inflation scenario, the interacting qubits form a rapidly growing domain where the n**m states become separated ensemble states, rising long-range forces stop ultimately further growth. Then standard cosmology with the hot fireball model takes over. Our theory agrees well with lack of inflation traces in cosmic background measurements. We explain by cosmological crystallization instead of inflation: early creation of large-scale structure of voids and filaments, supercluster formation, galaxy formation, and the dominance of matter: the unit cell of our crystal universe has a matter handedness avoiding anti-matter. We prove initiation of qubit interactions can only be 1,2,4 or 8-dimensional (agrees with E8 symmetry of our universe). Repulsive forces at ultrashort distances result from quantization, long-range forces limit crystal growth. Crystals come and go in the qubit ocean. This selects for the ability to lay seeds for new crystals, for self-organization and life-friendliness. The phase space of the crystal agrees with the standard model of the basic four forces for n quanta. It includes all possible ensemble combinations of their quantum states m, a total of n**m states. Neighbor states reach according to transition possibilities (S-matrix) with emergent time from entropic ensemble gradients. However, in our four dimensions there is only one bit overlap to neighbor states left (almost solid, only below Planck quantum there is liquidity left). The E8 symmetry of heterotic string theory has six curled-up, small dimensions which help to keep the qubit crystal together and will never expand. Mathematics focusses on the Hurwitz proof applied to qubit interaction, a toy model of qubit interaction and repulsive forces of qubits. Vacuum energy gets appropriate low inside the crystal. We give first energy estimates for free qubits vs bound qubits, misplacements in the qubit crystal and entropy increase during qubit decoherence / crystal formation. Scalar fields for color interaction/confinement and gravity are derived from the qubit-interaction field.}, language = {en} } @article{SalihogluSrivastavaLiangetal.2023, author = {Salihoglu, Rana and Srivastava, Mugdha and Liang, Chunguang and Schilling, Klaus and Szalay, Aladar and Bencurova, Elena and Dandekar, Thomas}, title = {PRO-Simat: Protein network simulation and design tool}, series = {Computational and Structural Biotechnology Journal}, volume = {21}, journal = {Computational and Structural Biotechnology Journal}, issn = {2001-0370}, doi = {10.1016/j.csbj.2023.04.023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350034}, pages = {2767-2779}, year = {2023}, abstract = {PRO-Simat is a simulation tool for analysing protein interaction networks, their dynamic change and pathway engineering. It provides GO enrichment, KEGG pathway analyses, and network visualisation from an integrated database of more than 8 million protein-protein interactions across 32 model organisms and the human proteome. We integrated dynamical network simulation using the Jimena framework, which quickly and efficiently simulates Boolean genetic regulatory networks. It enables simulation outputs with in-depth analysis of the type, strength, duration and pathway of the protein interactions on the website. Furthermore, the user can efficiently edit and analyse the effect of network modifications and engineering experiments. In case studies, applications of PRO-Simat are demonstrated: (i) understanding mutually exclusive differentiation pathways in Bacillus subtilis, (ii) making Vaccinia virus oncolytic by switching on its viral replication mainly in cancer cells and triggering cancer cell apoptosis and (iii) optogenetic control of nucleotide processing protein networks to operate DNA storage. Multilevel communication between components is critical for efficient network switching, as demonstrated by a general census on prokaryotic and eukaryotic networks and comparing design with synthetic networks using PRO-Simat. The tool is available at https://prosimat.heinzelab.de/ as a web-based query server.}, language = {en} } @article{CaliskanCaliskanRasbachetal.2023, author = {Caliskan, Aylin and Caliskan, Deniz and Rasbach, Lauritz and Yu, Weimeng and Dandekar, Thomas and Breitenbach, Tim}, title = {Optimized cell type signatures revealed from single-cell data by combining principal feature analysis, mutual information, and machine learning}, series = {Computational and Structural Biotechnology Journal}, volume = {21}, journal = {Computational and Structural Biotechnology Journal}, issn = {2001-0370}, doi = {10.1016/j.csbj.2023.06.002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349989}, pages = {3293-3314}, year = {2023}, abstract = {Machine learning techniques are excellent to analyze expression data from single cells. These techniques impact all fields ranging from cell annotation and clustering to signature identification. The presented framework evaluates gene selection sets how far they optimally separate defined phenotypes or cell groups. This innovation overcomes the present limitation to objectively and correctly identify a small gene set of high information content regarding separating phenotypes for which corresponding code scripts are provided. The small but meaningful subset of the original genes (or feature space) facilitates human interpretability of the differences of the phenotypes including those found by machine learning results and may even turn correlations between genes and phenotypes into a causal explanation. For the feature selection task, the principal feature analysis is utilized which reduces redundant information while selecting genes that carry the information for separating the phenotypes. In this context, the presented framework shows explainability of unsupervised learning as it reveals cell-type specific signatures. Apart from a Seurat preprocessing tool and the PFA script, the pipeline uses mutual information to balance accuracy and size of the gene set if desired. A validation part to evaluate the gene selection for their information content regarding the separation of the phenotypes is provided as well, binary and multiclass classification of 3 or 4 groups are studied. Results from different single-cell data are presented. In each, only about ten out of more than 30000 genes are identified as carrying the relevant information. The code is provided in a GitHub repository at https://github.com/AC-PHD/Seurat_PFA_pipeline.}, language = {en} } @article{CaliskanDangwalDandekar2023, author = {Caliskan, Aylin and Dangwal, Seema and Dandekar, Thomas}, title = {Metadata integrity in bioinformatics: bridging the gap between data and knowledge}, series = {Computational and Structural Biotechnology Journal}, volume = {21}, journal = {Computational and Structural Biotechnology Journal}, issn = {2001-0370}, doi = {10.1016/j.csbj.2023.10.006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349990}, pages = {4895-4913}, year = {2023}, abstract = {In the fast-evolving landscape of biomedical research, the emergence of big data has presented researchers with extraordinary opportunities to explore biological complexities. In biomedical research, big data imply also a big responsibility. This is not only due to genomics data being sensitive information but also due to genomics data being shared and re-analysed among the scientific community. This saves valuable resources and can even help to find new insights in silico. To fully use these opportunities, detailed and correct metadata are imperative. This includes not only the availability of metadata but also their correctness. Metadata integrity serves as a fundamental determinant of research credibility, supporting the reliability and reproducibility of data-driven findings. Ensuring metadata availability, curation, and accuracy are therefore essential for bioinformatic research. Not only must metadata be readily available, but they must also be meticulously curated and ideally error-free. Motivated by an accidental discovery of a critical metadata error in patient data published in two high-impact journals, we aim to raise awareness for the need of correct, complete, and curated metadata. We describe how the metadata error was found, addressed, and present examples for metadata-related challenges in omics research, along with supporting measures, including tools for checking metadata and software to facilitate various steps from data analysis to published research. Highlights • Data awareness and data integrity underpins the trustworthiness of results and subsequent further analysis. • Big data and bioinformatics enable efficient resource use by repurposing publicly available RNA-Sequencing data. • Manual checks of data quality and integrity are insufficient due to the overwhelming volume and rapidly growing data. • Automation and artificial intelligence provide cost-effective and efficient solutions for data integrity and quality checks. • FAIR data management, various software solutions and analysis tools assist metadata maintenance.}, language = {en} } @article{LutherBrandtVylkovaetal.2023, author = {Luther, Christian H. and Brandt, Philipp and Vylkova, Slavena and Dandekar, Thomas and M{\"u}ller, Tobias and Dittrich, Marcus}, title = {Integrated analysis of SR-like protein kinases Sky1 and Sky2 links signaling networks with transcriptional regulation in Candida albicans}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {13}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2023.1108235}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311771}, year = {2023}, abstract = {Fungal infections are a major global health burden where Candida albicans is among the most common fungal pathogen in humans and is a common cause of invasive candidiasis. Fungal phenotypes, such as those related to morphology, proliferation and virulence are mainly driven by gene expression, which is primarily regulated by kinase signaling cascades. Serine-arginine (SR) protein kinases are highly conserved among eukaryotes and are involved in major transcriptional processes in human and S. cerevisiae. Candida albicans harbors two SR protein kinases, while Sky2 is important for metabolic adaptation, Sky1 has similar functions as in S. cerevisiae. To investigate the role of these SR kinases for the regulation of transcriptional responses in C. albicans, we performed RNA sequencing of sky1Δ and sky2Δ and integrated a comprehensive phosphoproteome dataset of these mutants. Using a Systems Biology approach, we study transcriptional regulation in the context of kinase signaling networks. Transcriptomic enrichment analysis indicates that pathways involved in the regulation of gene expression are downregulated and mitochondrial processes are upregulated in sky1Δ. In sky2Δ, primarily metabolic processes are affected, especially for arginine, and we observed that arginine-induced hyphae formation is impaired in sky2Δ. In addition, our analysis identifies several transcription factors as potential drivers of the transcriptional response. Among these, a core set is shared between both kinase knockouts, but it appears to regulate different subsets of target genes. To elucidate these diverse regulatory patterns, we created network modules by integrating the data of site-specific protein phosphorylation and gene expression with kinase-substrate predictions and protein-protein interactions. These integrated signaling modules reveal shared parts but also highlight specific patterns characteristic for each kinase. Interestingly, the modules contain many proteins involved in fungal morphogenesis and stress response. Accordingly, experimental phenotyping shows a higher resistance to Hygromycin B for sky1Δ. Thus, our study demonstrates that a combination of computational approaches with integration of experimental data can offer a new systems biological perspective on the complex network of signaling and transcription. With that, the investigation of the interface between signaling and transcriptional regulation in C. albicans provides a deeper insight into how cellular mechanisms can shape the phenotype.}, language = {en} } @article{BencurovaAkashDobsonetal.2023, author = {Bencurova, Elena and Akash, Aman and Dobson, Renwick C.J. and Dandekar, Thomas}, title = {DNA storage-from natural biology to synthetic biology}, series = {Computational and Structural Biotechnology Journal}, volume = {21}, journal = {Computational and Structural Biotechnology Journal}, issn = {2001-0370}, doi = {10.1016/j.csbj.2023.01.045}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349971}, pages = {1227-1235}, year = {2023}, abstract = {Natural DNA storage allows cellular differentiation, evolution, the growth of our children and controls all our ecosystems. Here, we discuss the fundamental aspects of DNA storage and recent advances in this field, with special emphasis on natural processes and solutions that can be exploited. We point out new ways of efficient DNA and nucleotide storage that are inspired by nature. Within a few years DNA-based information storage may become an attractive and natural complementation to current electronic data storage systems. We discuss rapid and directed access (e.g. DNA elements such as promotors, enhancers), regulatory signals and modulation (e.g. lncRNA) as well as integrated high-density storage and processing modules (e.g. chromosomal territories). There is pragmatic DNA storage for use in biotechnology and human genetics. We examine DNA storage as an approach for synthetic biology (e.g. light-controlled nucleotide processing enzymes). The natural polymers of DNA and RNA offer much for direct storage operations (read-in, read-out, access control). The inbuilt parallelism (many molecules at many places working at the same time) is important for fast processing of information. Using biology concepts from chromosomal storage, nucleic acid processing as well as polymer material sciences such as electronical effects in enzymes, graphene, nanocellulose up to DNA macram{\´e} , DNA wires and DNA-based aptamer field effect transistors will open up new applications gradually replacing classical information storage methods in ever more areas over time (decades).}, language = {en} } @article{OsmanogluGuptaAlmasietal.2023, author = {Osmanoglu, {\"O}zge and Gupta, Shishir K. and Almasi, Anna and Yagci, Seray and Srivastava, Mugdha and Araujo, Gabriel H. M. and Nagy, Zoltan and Balkenhol, Johannes and Dandekar, Thomas}, title = {Signaling network analysis reveals fostamatinib as a potential drug to control platelet hyperactivation during SARS-CoV-2 infection}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1285345}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354158}, year = {2023}, abstract = {Introduction Pro-thrombotic events are one of the prevalent causes of intensive care unit (ICU) admissions among COVID-19 patients, although the signaling events in the stimulated platelets are still unclear. Methods We conducted a comparative analysis of platelet transcriptome data from healthy donors, ICU, and non-ICU COVID-19 patients to elucidate these mechanisms. To surpass previous analyses, we constructed models of involved networks and control cascades by integrating a global human signaling network with transcriptome data. We investigated the control of platelet hyperactivation and the specific proteins involved. Results Our study revealed that control of the platelet network in ICU patients is significantly higher than in non-ICU patients. Non-ICU patients require control over fewer proteins for managing platelet hyperactivity compared to ICU patients. Identification of indispensable proteins highlighted key subnetworks, that are targetable for system control in COVID-19-related platelet hyperactivity. We scrutinized FDA-approved drugs targeting indispensable proteins and identified fostamatinib as a potent candidate for preventing thrombosis in COVID-19 patients. Discussion Our findings shed light on how SARS-CoV-2 efficiently affects host platelets by targeting indispensable and critical proteins involved in the control of platelet activity. We evaluated several drugs for specific control of platelet hyperactivity in ICU patients suffering from platelet hyperactivation. The focus of our approach is repurposing existing drugs for optimal control over the signaling network responsible for platelet hyperactivity in COVID-19 patients. Our study offers specific pharmacological recommendations, with drug prioritization tailored to the distinct network states observed in each patient condition. Interactive networks and detailed results can be accessed at https://fostamatinib.bioinfo-wuerz.eu/.}, language = {en} } @article{BencurovaShityakovSchaacketal.2022, author = {Bencurova, Elena and Shityakov, Sergey and Schaack, Dominik and Kaltdorf, Martin and Sarukhanyan, Edita and Hilgarth, Alexander and Rath, Christin and Montenegro, Sergio and Roth, G{\"u}nter and Lopez, Daniel and Dandekar, Thomas}, title = {Nanocellulose composites as smart devices with chassis, light-directed DNA Storage, engineered electronic properties, and chip integration}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {10}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2022.869111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283033}, year = {2022}, abstract = {The rapid development of green and sustainable materials opens up new possibilities in the field of applied research. Such materials include nanocellulose composites that can integrate many components into composites and provide a good chassis for smart devices. In our study, we evaluate four approaches for turning a nanocellulose composite into an information storage or processing device: 1) nanocellulose can be a suitable carrier material and protect information stored in DNA. 2) Nucleotide-processing enzymes (polymerase and exonuclease) can be controlled by light after fusing them with light-gating domains; nucleotide substrate specificity can be changed by mutation or pH change (read-in and read-out of the information). 3) Semiconductors and electronic capabilities can be achieved: we show that nanocellulose is rendered electronic by iodine treatment replacing silicon including microstructures. Nanocellulose semiconductor properties are measured, and the resulting potential including single-electron transistors (SET) and their properties are modeled. Electric current can also be transported by DNA through G-quadruplex DNA molecules; these as well as classical silicon semiconductors can easily be integrated into the nanocellulose composite. 4) To elaborate upon miniaturization and integration for a smart nanocellulose chip device, we demonstrate pH-sensitive dyes in nanocellulose, nanopore creation, and kinase micropatterning on bacterial membranes as well as digital PCR micro-wells. Future application potential includes nano-3D printing and fast molecular processors (e.g., SETs) integrated with DNA storage and conventional electronics. This would also lead to environment-friendly nanocellulose chips for information processing as well as smart nanocellulose composites for biomedical applications and nano-factories.}, language = {en} } @unpublished{Dandekar2022, author = {Dandekar, Thomas}, title = {Qubit transition into defined Bits: A fresh perspective for cosmology and unifying theories}, doi = {10.25972/OPUS-26641}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266418}, pages = {42}, year = {2022}, abstract = {In this view point we do not change cosmology after the hot fireball starts (hence agrees well with observation), but the changed start suggested and resulting later implications lead to an even better fit with current observations (voids, supercluster and galaxy formation; matter and no antimatter) than the standard model with big bang and inflation: In an eternal ocean of qubits, a cluster of qubits crystallizes to defined bits. The universe does not jump into existence ("big bang") but rather you have an eternal ocean of qubits in free super-position of all their quantum states (of any dimension, force field and particle type) as permanent basis. The undefined, boiling vacuum is the real "outside", once you leave our everyday universe. A set of n Qubits in the ocean are "liquid", in very undefined state, they have all their m possibilities for quantum states in free superposition. However, under certain conditions the qubits interact, become defined, and freeze out, crystals form and give rise to a defined, real world with all possible time series and world lines. GR holds only within the crystal. In our universe all n**m quantum possibilities are nicely separated and crystallized out to defined bit states: A toy example with 6 qubits each having 2 states illustrates, this is completely sufficient to encode space using 3 bits for x,y and z, 1 bit for particle type and 2 bits for its state. Just by crystallization, space, particles and their properties emerge from the ocean of qubits, and following the arrow of entropy, time emerges, following an arrow of time and expansion from one corner of the toy universe to everywhere else. This perspective provides time as emergent feature considering entropy: crystallization of each world line leads to defined world lines over their whole existence, while entropy ensures direction of time and higher representation of high entropy states considering the whole crystal and all slices of world lines. The crystal perspective is also economic compared to the Everett-type multiverse, each qubit has its m quantum states and n qubits interacting forming a crystal and hence turning into defined bit states has only n**m states and not more states. There is no Everett-type world splitting with every decision but rather individual world trajectories reside in individual world layers of the crystal. Finally, bit-separated crystals come and go in the qubit ocean, selecting for the ability to lay seeds for new crystals. This self-organizing reproduction selects over generations also for life-friendliness. Mathematical treatment introduces quantum action theory as a framework for a general lattice field theory extending quantum chromo dynamics where scalar fields for color interaction and gravity have to be derived from the permeating qubit-interaction field. Vacuum energy should get appropriately low by the binding properties of the qubit crystal. Connections to loop quantum gravity, string theory and emergent gravity are discussed. Standard physics (quantum computing; crystallization, solid state physics) allow validation tests of this perspective and will extend current results.}, language = {en} } @article{GuptaOsmanogluMinochaetal.2022, author = {Gupta, Shishir K. and Osmanoglu, {\"O}zge and Minocha, Rashmi and Bandi, Sourish Reddy and Bencurova, Elena and Srivastava, Mugdha and Dandekar, Thomas}, title = {Genome-wide scan for potential CD4+ T-cell vaccine candidates in Candida auris by exploiting reverse vaccinology and evolutionary information}, series = {Frontiers in Medicine}, volume = {9}, journal = {Frontiers in Medicine}, issn = {2296-858X}, doi = {10.3389/fmed.2022.1008527}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293953}, year = {2022}, abstract = {Candida auris is a globally emerging fungal pathogen responsible for causing nosocomial outbreaks in healthcare associated settings. It is known to cause infection in all age groups and exhibits multi-drug resistance with high potential for horizontal transmission. Because of this reason combined with limited therapeutic choices available, C. auris infection has been acknowledged as a potential risk for causing a future pandemic, and thus seeking a promising strategy for its treatment is imperative. Here, we combined evolutionary information with reverse vaccinology approach to identify novel epitopes for vaccine design that could elicit CD4+ T-cell responses against C. auris. To this end, we extensively scanned the family of proteins encoded by C. auris genome. In addition, a pathogen may acquire substitutions in epitopes over a period of time which could cause its escape from the immune response thus rendering the vaccine ineffective. To lower this possibility in our design, we eliminated all rapidly evolving genes of C. auris with positive selection. We further employed highly conserved regions of multiple C. auris strains and identified two immunogenic and antigenic T-cell epitopes that could generate the most effective immune response against C. auris. The antigenicity scores of our predicted vaccine candidates were calculated as 0.85 and 1.88 where 0.5 is the threshold for prediction of fungal antigenic sequences. Based on our results, we conclude that our vaccine candidates have the potential to be successfully employed for the treatment of C. auris infection. However, in vivo experiments are imperative to further demonstrate the efficacy of our design.}, language = {en} } @article{PradaMaagSiegmundetal.2022, author = {Prada, Juan Pablo and Maag, Luca Estelle and Siegmund, Laura and Bencurova, Elena and Liang, Chunguang and Koutsilieri, Eleni and Dandekar, Thomas and Scheller, Carsten}, title = {Estimation of R0 for the spread of SARS-CoV-2 in Germany from excess mortality}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-022-22101-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301415}, year = {2022}, abstract = {For SARS-CoV-2, R0 calculations in the range of 2-3 dominate the literature, but much higher estimates have also been published. Because capacity for RT-PCR testing increased greatly in the early phase of the Covid-19 pandemic, R0 determinations based on these incidence values are subject to strong bias. We propose to use Covid-19-induced excess mortality to determine R0 regardless of RT-PCR testing capacity. We used data from the Robert Koch Institute (RKI) on the incidence of Covid cases, Covid-related deaths, number of RT-PCR tests performed, and excess mortality calculated from data from the Federal Statistical Office in Germany. We determined R0 using exponential growth estimates with a serial interval of 4.7 days. We used only datasets that were not yet under the influence of policy measures (e.g., lockdowns or school closures). The uncorrected R0 value for the spread of SARS-CoV-2 based on RT-PCR incidence data was 2.56 (95\% CI 2.52-2.60) for Covid-19 cases and 2.03 (95\% CI 1.96-2.10) for Covid-19-related deaths. However, because the number of RT-PCR tests increased by a growth factor of 1.381 during the same period, these R0 values must be corrected accordingly (R0corrected = R0uncorrected/1.381), yielding 1.86 for Covid-19 cases and 1.47 for Covid-19 deaths. The R0 value based on excess deaths was calculated to be 1.34 (95\% CI 1.32-1.37). A sine-function-based adjustment for seasonal effects of 40\% corresponds to a maximum value of R0January = 1.68 and a minimum value of R0July = 1.01. Our calculations show an R0 that is much lower than previously thought. This relatively low range of R0 fits very well with the observed seasonal pattern of infection across Europe in 2020 and 2021, including the emergence of more contagious escape variants such as delta or omicron. In general, our study shows that excess mortality can be used as a reliable surrogate to determine the R0 in pandemic situations.}, language = {en} } @article{AydinliLiangDandekar2022, author = {Aydinli, Muharrem and Liang, Chunguang and Dandekar, Thomas}, title = {Motif and conserved module analysis in DNA (promoters, enhancers) and RNA (lncRNA, mRNA) using AlModules}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-022-21732-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301268}, year = {2022}, abstract = {Nucleic acid motifs consist of conserved and variable nucleotide regions. For functional action, several motifs are combined to modules. The tool AIModules allows identification of such motifs including combinations of them and conservation in several nucleic acid stretches. AIModules recognizes conserved motifs and combinations of motifs (modules) allowing a number of interesting biological applications such as analysis of promoter and transcription factor binding sites (TFBS), identification of conserved modules shared between several gene families, e.g. promoter regions, but also analysis of shared and conserved other DNA motifs such as enhancers and silencers, in mRNA (motifs or regulatory elements e.g. for polyadenylation) and lncRNAs. The tool AIModules presented here is an integrated solution for motif analysis, offered as a Web service as well as downloadable software. Several nucleotide sequences are queried for TFBSs using predefined matrices from the JASPAR DB or by using one's own matrices for diverse types of DNA or RNA motif discovery. Furthermore, AIModules can find TFBSs common to two or more sequences. Demanding high or low conservation, AIModules outperforms other solutions in speed and finds more modules (specific combinations of TFBS) than alternative available software. The application also searches RNA motifs such as polyadenylation site or RNA-protein binding motifs as well as DNA motifs such as enhancers as well as user-specified motif combinations (https://bioinfo-wuerz.de/aimodules/; alternative entry pages: https://aimodules.heinzelab.de or https://www.biozentrum.uni-wuerzburg.de/bioinfo/computing/aimodules). The application is free and open source whether used online, on-site, or locally.}, language = {en} } @article{AbdelLatifFathyAnwaretal.2022, author = {Abdel-Latif, Rania and Fathy, Moustafa and Anwar, Hend Ali and Naseem, Muhammad and Dandekar, Thomas and Othman, Eman M.}, title = {Cisplatin-induced reproductive toxicity and oxidative stress: ameliorative effect of kinetin}, series = {Antioxidants}, volume = {11}, journal = {Antioxidants}, number = {5}, issn = {2076-3921}, doi = {10.3390/antiox11050863}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-271223}, year = {2022}, abstract = {Cisplatin is a commonly used chemotherapeutic agent; however, its potential side effects, including gonadotoxicity and infertility, are a critical problem. Oxidative stress has been implicated in the pathogenesis of cisplatin-induced testicular dysfunction. We investigated whether kinetin use at different concentrations could alleviate gonadal injury associated with cisplatin treatment, with an exploration of the involvement of its antioxidant capacity. Kinetin was administered in different doses of 0.25, 0.5, and 1 mg/kg, alone or along with cisplatin for 10 days. Cisplatin toxicity was induced via a single IP dose of 7 mg/kg on day four. In a dose-dependent manner, concomitant administration of kinetin with cisplatin significantly restored testicular oxidative stress parameters, corrected the distorted sperm quality parameters and histopathological changes, enhanced levels of serum testosterone and testicular StAR protein expression, as well as reduced the up-regulation of testicular TNF-α, IL-1β, Il-6, and caspase-3, caused by cisplatin. It is worth noting that the testicular protective effect of the highest kinetin dose was comparable/more potent and significantly higher than the effects of vitamin C and the lowest kinetin dose, respectively. Overall, these data indicate that kinetin may offer a promising approach for alleviating cisplatin-induced reproductive toxicity and organ damage, via ameliorating oxidative stress and reducing inflammation and apoptosis.}, language = {en} } @article{CaliskanCrouchGiddinsetal.2022, author = {Caliskan, Aylin and Crouch, Samantha A. W. and Giddins, Sara and Dandekar, Thomas and Dangwal, Seema}, title = {Progeria and aging — Omics based comparative analysis}, series = {Biomedicines}, volume = {10}, journal = {Biomedicines}, number = {10}, issn = {2227-9059}, doi = {10.3390/biomedicines10102440}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289868}, year = {2022}, abstract = {Since ancient times aging has also been regarded as a disease, and humankind has always strived to extend the natural lifespan. Analyzing the genes involved in aging and disease allows for finding important indicators and biological markers for pathologies and possible therapeutic targets. An example of the use of omics technologies is the research regarding aging and the rare and fatal premature aging syndrome progeria (Hutchinson-Gilford progeria syndrome, HGPS). In our study, we focused on the in silico analysis of differentially expressed genes (DEGs) in progeria and aging, using a publicly available RNA-Seq dataset (GEO dataset GSE113957) and a variety of bioinformatics tools. Despite the GSE113957 RNA-Seq dataset being well-known and frequently analyzed, the RNA-Seq data shared by Fleischer et al. is far from exhausted and reusing and repurposing the data still reveals new insights. By analyzing the literature citing the use of the dataset and subsequently conducting a comparative analysis comparing the RNA-Seq data analyses of different subsets of the dataset (healthy children, nonagenarians and progeria patients), we identified several genes involved in both natural aging and progeria (KRT8, KRT18, ACKR4, CCL2, UCP2, ADAMTS15, ACTN4P1, WNT16, IGFBP2). Further analyzing these genes and the pathways involved indicated their possible roles in aging, suggesting the need for further in vitro and in vivo research. In this paper, we (1) compare "normal aging" (nonagenarians vs. healthy children) and progeria (HGPS patients vs. healthy children), (2) enlist genes possibly involved in both the natural aging process and progeria, including the first mention of IGFBP2 in progeria, (3) predict miRNAs and interactomes for WNT16 (hsa-mir-181a-5p), UCP2 (hsa-mir-26a-5p and hsa-mir-124-3p), and IGFBP2 (hsa-mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p), (4) demonstrate the compatibility of well-established R packages for RNA-Seq analysis for researchers interested but not yet familiar with this kind of analysis, and (5) present comparative proteomics analyses to show an association between our RNA-Seq data analyses and corresponding changes in protein expression.}, language = {en} } @article{FathySaadEldinNaseemetal.2022, author = {Fathy, Moustafa and Saad Eldin, Sahar M. and Naseem, Muhammad and Dandekar, Thomas and Othman, Eman M.}, title = {Cytokinins: wide-spread signaling hormones from plants to humans with high medical potential}, series = {Nutrients}, volume = {14}, journal = {Nutrients}, number = {7}, issn = {2072-6643}, doi = {10.3390/nu14071495}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-271017}, year = {2022}, abstract = {Nature is a rich source of biologically active novel compounds. Sixty years ago, the plant hormones cytokinins were first discovered. These play a major role in cell division and cell differentiation. They affect organogenesis in plant tissue cultures and contribute to many other physiological and developmental processes in plants. Consequently, the effect of cytokinins on mammalian cells has caught the attention of researchers. Many reports on the contribution and potential of cytokinins in the therapy of different human diseases and pathophysiological conditions have been published and are reviewed here. We compare cytokinin effects and pathways in plants and mammalian systems and highlight the most important biological activities. We present the strong profile of the biological actions of cytokinins and their possible therapeutic applications.}, language = {en} }