@article{ChenHiranoWerneretal.2018, author = {Chen, Xinyu and Hirano, Mitsuru and Werner, Rudolf A. and Decker, Michael and Higuchi, Takahiro}, title = {Novel \(^{18}\)F-labeled PET Imaging Agent FV45 targeting the Renin-Angiotensin System}, series = {ACS Omega}, volume = {3}, journal = {ACS Omega}, number = {9}, issn = {2470-1343}, doi = {10.1021/acsomega.8b01885}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167144}, pages = {10460-10470}, year = {2018}, abstract = {Renin-angiotensin system (RAS) plays an important role in the regulation of blood pressure and hormonal balance. Using positron emission tomography (PET) technology, it is possible to monitor the physiological and pathological distribution of angiotensin II type 1 receptors (AT\(_1\)), which reflects the functionality of RAS. A new \(^{18}\)F-labeled PET tracer derived from the clinically used AT\(_1\) antagonist valsartan showing the least possible chemical alteration from the valsartan structure has been designed and synthesized with several strategies, which can be applied for the syntheses of further derivatives. Radioligand binding study showed that the cold reference FV45 (K\(_i\) 14.6 nM) has almost equivalent binding affinity as its lead valsartan (K\(_i\) 11.8 nM) and angiotensin II (K\(_i\) 1.7 nM). Successful radiolabeling of FV45 in a one-pot radiofluorination followed by the deprotection procedure with 21.8 ± 8.5\% radiochemical yield and >99\% radiochemical purity (n = 5) enabled a distribution study in rats and opened a path to straightforward large-scale production. A fast and clear kidney uptake could be observed, and this renal uptake could be selectively blocked by pretreatment with AT\(_1\)-selective antagonist valsartan. Overall, as the first \(^{18}\)F-labeled PET tracer based on a derivation from clinically used drug valsartan with almost identical chemical structure, [\(^{18}\)F]FV45 will be a new tool for assessing the RAS function by visualizing AT\(_i\) receptor distributions and providing further information regarding cardiovascular system malfunction as well as possible applications in inflammation research and cancer diagnosis.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{ChenKudoLapaetal.2020, author = {Chen, Xinyu and Kudo, Takashi and Lapa, Constantin and Buck, Andreas and Higuchi, Takahiro}, title = {Recent advances in radiotracers targeting norepinephrine transporter: structural development and radiolabeling improvements}, series = {Journal of Neural Transmission}, volume = {127}, journal = {Journal of Neural Transmission}, doi = {10.1007/s00702-020-02180-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241148}, pages = {851-873}, year = {2020}, abstract = {The norepinephrine transporter (NET) is a major target for the evaluation of the cardiac sympathetic nerve system in patients with heart failure and Parkinson's disease. It is also used in the therapeutic applications against certain types of neuroendocrine tumors, as exemplified by the clinically used \(^{123/131}\)I-MIBG as theranostic single-photon emission computed tomography (SPECT) agent. With the development of more advanced positron emission tomography (PET) technology, more radiotracers targeting NET have been reported, with superior temporal and spatial resolutions, along with the possibility of functional and kinetic analysis. More recently, fluorine-18-labelled NET tracers have drawn increasing attentions from researchers, due to their longer radiological half-life relative to carbon-11 (110 min vs. 20 min), reduced dependence on on-site cyclotrons, and flexibility in the design of novel tracer structures. In the heart, certain NET tracers provide integral diagnostic information on sympathetic innervation and the nerve status. In the central nervous system, such radiotracers can reveal NET distribution and density in pathological conditions. Most radiotracers targeting cardiac NET-function for the cardiac application consistent of derivatives of either norepinephrine or MIBG with its benzylguanidine core structure, e.g. \(^{11}\)C-HED and \(^{18}\)F-LMI1195. In contrast, all NET tracers used in central nervous system applications are derived from clinically used antidepressants. Lastly, possible applications of NET as selective tracers over organic cation transporters (OCTs) in the kidneys and other organs controlled by sympathetic nervous system will also be discussed.}, language = {en} } @article{ChenWernerJavadietal.2015, author = {Chen, Xinyu and Werner, Rudolf A. and Javadi, Mehrbod S. and Maya, Yoshifumi and Decker, Michael and Lapa, Constantin and Herrmann, Ken and Higuchi, Takahiro}, title = {Radionuclide imaging of neurohormonal system of the heart}, series = {Theranostics}, volume = {5}, journal = {Theranostics}, number = {6}, doi = {10.7150/thno.10900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149205}, pages = {545-558}, year = {2015}, abstract = {Heart failure is one of the growing causes of death especially in developed countries due to longer life expectancy. Although many pharmacological and instrumental therapeutic approaches have been introduced for prevention and treatment of heart failure, there are still limitations and challenges. Nuclear cardiology has experienced rapid growth in the last few decades, in particular the application of single photon emission computed tomography (SPECT) and positron emission tomography (PET), which allow non-invasive functional assessment of cardiac condition including neurohormonal systems involved in heart failure; its application has dramatically improved the capacity for fundamental research and clinical diagnosis. In this article, we review the current status of applying radionuclide technology in non-invasive imaging of neurohormonal system in the heart, especially focusing on the tracers that are currently available. A short discussion about disadvantages and perspectives is also included.}, language = {en} } @article{ChenWernerKoshinoetal.2022, author = {Chen, Xinyu and Werner, Rudolf A. and Koshino, Kazuhiro and Nose, Naoko and M{\"u}hlig, Saskia and Rowe, Steven P. and Pomper, Martin G. and Lapa, Constantin and Decker, Michael and Higuchi, Takahiro}, title = {Molecular Imaging-Derived Biomarker of Cardiac Nerve Integrity - Introducing High NET Affinity PET Probe \(^{18}\)F-AF78}, series = {Theranostics}, volume = {12}, journal = {Theranostics}, number = {9}, doi = {10.7150/thno.63205}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300685}, pages = {4446 -- 4458}, year = {2022}, abstract = {Background: Radiolabeled agents that are substrates for the norepinephrine transporter (NET) can be used to quantify cardiac sympathetic nervous conditions and have been demonstrated to identify high-risk congestive heart failure (HF) patients prone to arrhythmic events. We aimed to fully characterize the kinetic profile of the novel \(^{18}\)F-labeled NET probe AF78 for PET imaging of the cardiac sympathetic nervous system (SNS) among various species. Methods: \(^{18}\)F-AF78 was compared to norepinephrine (NE) and established SNS radiotracers by employing in vitro cell assays, followed by an in vivo PET imaging approach with healthy rats, rabbits and nonhuman primates (NHPs). Additionally, chase protocols were performed in NHPs with NET inhibitor desipramine (DMI) and the NE releasing stimulator tyramine (TYR) to investigate retention kinetics in cardiac SNS. Results: Relative to other SNS radiotracers, 18F-AF78 showed higher transport affinity via NET in a cell-based competitive uptake assay (IC\(^{50}\) 0.42 ± 0.14 µM), almost identical to that of NE (IC\(^{50}\), 0.50 ± 0.16 µM, n.s.). In rabbits and NHPs, initial cardiac uptake was significantly reduced by NET inhibition. Furthermore, cardiac tracer retention was not affected by a DMI chase protocol but was markedly reduced by intermittent TYR chase, thereby suggesting that \(^{18}\)F-AF78 is stored and can be released via the synaptic vesicular turnover process. Computational modeling hypothesized the formation of a T-shaped π-π stacking at the binding site, suggesting a rationale for the high affinity of \(^{18}\)F-AF78. Conclusion: \(^{18}\)F-AF78 demonstrated high in vitro NET affinity and advantageous in vivo radiotracer kinetics across various species, indicating that \(^{18}\)F-AF78 is an SNS imaging agent with strong potential to guide specific interventions in cardiovascular medicine.}, language = {en} } @article{ChenWernerLapaetal.2018, author = {Chen, Xinyu and Werner, Rudolf A. and Lapa, Constantin and Nose, Naoko and Hirano, Mitsuru and Javadi, Mehrbod S. and Robinson, Simon and Higuchi, Takahiro}, title = {Subcellular storage and release mode of the novel \(^{18}\)F-labeled sympathetic nerve PET tracer LMI1195}, series = {EJNMMI Research}, volume = {8}, journal = {EJNMMI Research}, number = {12}, issn = {2191-219X}, doi = {10.1186/s13550-018-0365-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167081}, year = {2018}, abstract = {Background: \(^{18}\)F-N-[3-bromo-4-(3-fluoro-propoxy)-benzyl]-guanidine (\(^{18}\)F-LMI1195) is a new class of PET tracer designed for sympathetic nervous imaging of the heart. The favorable image quality with high and specific neural uptake has been previously demonstrated in animals and humans, but intracellular behavior is not yet fully understood. The aim of the present study is to verify whether it is taken up in storage vesicles and released in company with vesicle turnover. Results: Both vesicle-rich (PC12) and vesicle-poor (SK-N-SH) norepinephrine-expressing cell lines were used for in vitro tracer uptake studies. After 2 h of \(^{18}\)F-LMI1195 preloading into both cell lines, effects of stimulants for storage vesicle turnover (high concentration KCl (100 mM) or reserpine treatment) were measured at 10, 20, and 30 min. \(^{131}\)I-meta-iodobenzylguanidine (\(^{131}\)I-MIBG) served as a reference. Both high concentration KCl and reserpine enhanced \(^{18}\)F-LMI1195 washout from PC12 cells, while tracer retention remained stable in the SK-N-SH cells. After 30 min of treatment, 18F-LMI1195 releasing index (percentage of tracer released from cells) from vesicle-rich PC12 cells achieved significant differences compared to cells without treatment condition. In contrast, such effect could not be observed using vesicle-poor SK-N-SH cell lines. Similar tracer kinetics after KCl or reserpine treatment were also observed using 131I-MIBG. In case of KCl exposure, Ca\(^{2+}\)-free buffer with the calcium chelator, ethylenediaminetetracetic acid (EDTA), could suppress the tracer washout from PC12 cells. This finding is consistent with the tracer release being mediated by Ca\(^{2+}\) influx resulting from membrane depolarization. Conclusions: Analogous to \(^{131}\)I-MIBG, the current in vitro tracer uptake study confirmed that \(^{131}\)F-LMI1195 is also stored in vesicles in PC12 cells and released along with vesicle turnover. Understanding the basic kinetics of \(^{18}\)FLMI1195 at a subcellular level is important for the design of clinical imaging protocols and imaging interpretation.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{EisslerWernerAriasLozaetal.2021, author = {Eissler, Cristoph and Werner, Rudolf A. and Arias-Loza, Paula and Nose, Naoko and Chen, Xinyu and Pomper, Martin G. and Rowe, Steven P. and Lapa, Constantin and Buck, Andreas K. and Higuchi, Takahiro}, title = {The number of frames on ECG-gated \(^{18}\)F-FDG small animal PET has a significant impact on LV systolic and diastolic functional parameters}, series = {Molecular Imaging}, volume = {2021}, journal = {Molecular Imaging}, doi = {10.1155/2021/4629459}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265778}, year = {2021}, abstract = {Objectives. This study is aimed at investigating the impact of frame numbers in preclinical electrocardiogram- (ECG-) gated \(^{18}\)F-fluorodeoxyglucose (\(^{18}\)F-FDG) positron emission tomography (PET) on systolic and diastolic left ventricular (LV) parameters in rats. Methods. \(^{18}\)F-FDG PET imaging using a dedicated small animal PET system with list mode data acquisition and continuous ECG recording was performed in diabetic and control rats. The list-mode data was sorted and reconstructed with different numbers of frames (4, 8, 12, and 16) per cardiac cycle into tomographic images. Using an automatic ventricular edge detection software, left ventricular (LV) functional parameters, including ejection fraction (EF), end-diastolic (EDV), and end-systolic volume (ESV), were calculated. Diastolic variables (time to peak filling (TPF), first third mean filling rate (1/3 FR), and peak filling rate (PFR)) were also assessed. Results. Significant differences in multiple parameters were observed among the reconstructions with different frames per cardiac cycle. EDV significantly increased by numbers of frames (353.8 \& PLUSMN; 57.7 mu l*, 380.8 \& PLUSMN; 57.2 mu l*, 398.0 \& PLUSMN; 63.1 mu l*, and 444.8 \& PLUSMN; 75.3 mu l at 4, 8, 12, and 16 frames, respectively; *P < 0.0001 vs. 16 frames), while systolic (EF) and diastolic (TPF, 1/3 FR and PFR) parameters were not significantly different between 12 and 16 frames. In addition, significant differences between diabetic and control animals in 1/3 FR and PFR in 16 frames per cardiac cycle were observed (P < 0.005), but not for 4, 8, and 12 frames. Conclusions. Using ECG-gated PET in rats, measurements of cardiac function are significantly affected by the frames per cardiac cycle. Therefore, if you are going to compare those functional parameters, a consistent number of frames should be used.}, language = {en} } @article{FroehlichSerflingHiguchietal.2021, author = {Fr{\"o}hlich, Matthias and Serfling, Sebastian and Higuchi, Takahiro and Pomper, Martin G. and Rowe, Steven P. and Schmalzing, Marc and Tony, Hans-Peter and Gernert, Michael and Strunz, Patrick-Pascal and Portegys, Jan and Schwaneck, Eva-Christina and Gadeholt, Ottar and Weich, Alexander and Buck, Andreas K. and Bley, Thorsten A. and Guggenberger, Konstanze V. and Werner, Rudolf A.}, title = {Whole-Body [\(^{18}\)F]FDG PET/CT Can Alter Diagnosis in Patients with Suspected Rheumatic Disease}, series = {Diagnostics}, volume = {11}, journal = {Diagnostics}, number = {11}, issn = {2075-4418}, doi = {10.3390/diagnostics11112073}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250227}, year = {2021}, abstract = {The 2-deoxy-d-[\(^{18}\)F]fluoro-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT) is widely utilized to assess the vascular and articular inflammatory burden of patients with a suspected diagnosis of rheumatic disease. We aimed to elucidate the impact of [\(^{18}\)F]FDG PET/CT on change in initially suspected diagnosis in patients at the time of the scan. Thirty-four patients, who had undergone [\(^{18}\)F]FDG PET/CT, were enrolled and the initially suspected diagnosis prior to [18F]FDG PET/CT was compared to the final diagnosis. In addition, a semi-quantitative analysis including vessel wall-to-liver (VLR) and joint-to-liver (JLR) ratios was also conducted. Prior to [\(^{18}\)F]FDG PET/CT, 22/34 (64.7\%) of patients did not have an established diagnosis, whereas in 7/34 (20.6\%), polymyalgia rheumatica (PMR) was suspected, and in 5/34 (14.7\%), giant cell arteritis (GCA) was suspected by the referring rheumatologists. After [\(^{18}\)F]FDG PET/CT, the diagnosis was GCA in 19/34 (55.9\%), combined GCA and PMR (GCA + PMR) in 9/34 (26.5\%) and PMR in the remaining 6/34 (17.6\%). As such, [\(^{18}\)F]FDG PET/CT altered suspected diagnosis in 28/34 (82.4\%), including in all unclear cases. VLR of patients whose final diagnosis was GCA tended to be significantly higher when compared to VLR in PMR (GCA, 1.01 ± 0.08 (95\%CI, 0.95-1.1) vs. PMR, 0.92 ± 0.1 (95\%CI, 0.85-0.99), p = 0.07), but not when compared to PMR + GCA (1.04 ± 0.14 (95\%CI, 0.95-1.13), p = 1). JLR of individuals finally diagnosed with PMR (0.94 ± 0.16, (95\%CI, 0.83-1.06)), however, was significantly increased relative to JLR in GCA (0.58 ± 0.04 (95\%CI, 0.55-0.61)) and GCA + PMR (0.64 ± 0.09 (95\%CI, 0.57-0.71); p < 0.0001, respectively). In individuals with a suspected diagnosis of rheumatic disease, an inflammatory-directed [\(^{18}\)F]FDG PET/CT can alter diagnosis in the majority of the cases, particularly in subjects who were referred because of diagnostic uncertainty. Semi-quantitative assessment may be helpful in establishing a final diagnosis of PMR, supporting the notion that a quantitative whole-body read-out may be useful in unclear cases.}, language = {en} } @article{GentzschChenSpatzetal.2021, author = {Gentzsch, Christian and Chen, Xinyu and Spatz, Philipp and Košak, Urban and Knez, Damijan and Nose, Naoko and Gobec, Stanislav and Higuchi, Takahiro and Decker, Michael}, title = {Synthesis and Initial Characterization of a Reversible, Selective \(^{18}\)F-Labeled Radiotracer for Human Butyrylcholinesterase}, series = {Molecular Imaging and Biology}, volume = {23}, journal = {Molecular Imaging and Biology}, number = {4}, issn = {1860-2002}, doi = {10.1007/s11307-021-01584-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269870}, pages = {505-515}, year = {2021}, abstract = {Purpose A neuropathological hallmark of Alzheimer's disease (AD) is the presence of amyloid-β (Aβ) plaques in the brain, which are observed in a significant number of cognitively normal, older adults as well. In AD, butyrylcholinesterase (BChE) becomes associated with A\(_{β}\) aggregates, making it a promising target for imaging probes to support diagnosis of AD. In this study, we present the synthesis, radiochemistry, in vitro and preliminary ex and in vivo investigations of a selective, reversible BChE inhibitor as PET-tracer for evaluation as an AD diagnostic. Procedures Radiolabeling of the inhibitor was achieved by fluorination of a respective tosylated precursor using K[\(^{18}\)F]. IC\(_{50}\) values of the fluorinated compound were obtained in a colorimetric assay using recombinant, human (h) BChE. Dissociation constants were determined by measuring hBChE activity in the presence of different concentrations of inhibitor. Results Radiofluorination of the tosylate precursor gave the desired radiotracer in an average radiochemical yield of 20 ± 3 \%. Identity and > 95.5 \% radiochemical purity were confirmed by HPLC and TLC autoradiography. The inhibitory potency determined in Ellman's assay gave an IC\(_{50}\) value of 118.3 ± 19.6 nM. Dissociation constants measured in kinetic experiments revealed lower affinity of the inhibitor for binding to the acylated enzyme (K2 = 68.0 nM) in comparison to the free enzyme (K\(_{1}\) = 32.9 nM). Conclusions The reversibly acting, selective radiotracer is synthetically easily accessible and retains promising activity and binding potential on hBChE. Radiosynthesis with \(^{18}\)F labeling of tosylates was feasible in a reasonable time frame and good radiochemical yield.}, language = {en} } @article{GentzschHoffmannOhshimaetal.2021, author = {Gentzsch, Christian and Hoffmann, Matthias and Ohshima, Yasuhiro and Nose, Naoko and Chen, Xinyu and Higuchi, Takahiro and Decker, Michael}, title = {Synthesis and Initial Characterization of a Selective, Pseudo-irreversible Inhibitor of Human Butyrylcholinesterase as PET Tracer}, series = {ChemMedChem}, volume = {16}, journal = {ChemMedChem}, number = {9}, doi = {10.1002/cmdc.202000942}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239904}, pages = {1427 -- 1437}, year = {2021}, abstract = {The enzyme butyrylcholinesterase (BChE) represents a promising target for imaging probes to potentially enable early diagnosis of neurodegenerative diseases like Alzheimer's disease (AD) and to monitor disease progression in some forms of cancer. In this study, we present the design, facile synthesis, in vitro and preliminary ex vivo and in vivo evaluation of a morpholine-based, selective inhibitor of human BChE as a positron emission tomography (PET) tracer with a pseudo-irreversible binding mode. We demonstrate a novel protecting group strategy for 18F radiolabeling of carbamate precursors and show that the inhibitory potency as well as kinetic properties of our unlabeled reference compound were retained in comparison to the parent compound. In particular, the prolonged duration of enzyme inhibition of such a morpholinocarbamate motivated us to design a PET tracer, possibly enabling a precise mapping of BChE distribution.}, language = {en} } @article{HartrampfWeinzierlBucketal.2022, author = {Hartrampf, Philipp E. and Weinzierl, Franz-Xaver and Buck, Andreas K. and Rowe, Steven P. and Higuchi, Takahiro and Seitz, Anna Katharina and K{\"u}bler, Hubert and Schirbel, Andreas and Essler, Markus and Bundschuh, Ralph A. and Werner, Rudolf A.}, title = {Matched-pair analysis of [\(^{177}\)Lu]Lu-PSMA I\&T and [\(^{177}\)Lu]Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, volume = {49}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, number = {9}, doi = {10.1007/s00259-022-05744-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324581}, pages = {3269-3276}, year = {2022}, abstract = {Background Labelled with lutetium-177, the urea-based small molecules PSMA I\&T and PSMA-617 are the two agents most frequently used for radioligand therapy (RLT) in patients with advanced metastatic castration-resistant and prostate-specific membrane antigen (PSMA) expressing prostate cancer (mCRPC). In this matched-pair analysis, we aimed to compare the toxicity and efficacy of both agents for PSMA-directed RLT. Materials and methods A total of 110 mCRPC patients from two centres were accrued, 55 individuals treated with [\(^{177}\)Lu]Lu-PSMA I\&T, and a matched cohort of 55 patients treated with [\(^{177}\)Lu]Lu-PSMA-617. Matching criteria included age at the first cycle, Gleason score, prostate-specific antigen (PSA) values, and previous taxane-based chemotherapy. Using common terminology criteria for adverse events (CTCAE v. 5.0), toxicity profiles were investigated (including bone marrow and renal toxicity). Overall survival (OS) between both groups was compared. Results Toxicity assessment revealed grade III anaemia in a single patient (1.8\%) for [\(^{177}\)Lu]Lu-PSMA I\&T and five (9.1\%) for [\(^{177}\)Lu]Lu-PSMA-617. In addition, one (1.9\%) grade III thrombopenia for [\(^{177}\)Lu]Lu-PSMA-617 was recorded. Apart from that, no other grade III/IV toxicities were present. A median OS of 12 months for patients treated with [\(^{177}\)Lu]Lu-PSMA I\&T did not differ significantly when compared to patients treated with [\(^{177}\)Lu]Lu-PSMA-617 (median OS, 13 months; P = 0.89). Conclusion In this matched-pair analysis of patients receiving one of the two agents most frequently applied for PSMA RLT, the rate of clinically relevant toxicities was low for both compounds. In addition, no relevant differences for OS were observed.}, language = {en} } @article{HartrampfWeinzierlSerflingetal.2022, author = {Hartrampf, Philipp E. and Weinzierl, Franz-Xaver and Serfling, Sebastian E. and Pomper, Martin G. and Rowe, Steven P. and Higuchi, Takahiro and Seitz, Anna Katharina and K{\"u}bler, Hubert and Buck, Andreas K. and Werner, Rudolf A.}, title = {Hematotoxicity and nephrotoxicity in prostate cancer patients undergoing radioligand therapy with [\(^{177}\)Lu]Lu-PSMA I\&T}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {3}, issn = {2072-6694}, doi = {10.3390/cancers14030647}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254825}, year = {2022}, abstract = {(1) Background: Prostate-specific membrane antigen (PSMA)-directed radioligand therapy (RLT) has shown remarkable results in patients with advanced prostate cancer. We aimed to evaluate the toxicity profile of the PSMA ligand [\(^{177}\)Lu]Lu-PSMA I\&T. (2) Methods: 49 patients with metastatic, castration-resistant prostate cancer treated with at least three cycles of [\(^{177}\)Lu]Lu-PSMA I\&T were evaluated. Prior to and after RLT, we compared leukocytes, hemoglobin, platelet counts, and renal functional parameters (creatinine, eGFR, n = 49; [\(^{99m}\)Tc]-MAG3-derived tubular extraction rate (TER), n = 42). Adverse events were classified according to the Common Terminology Criteria for Adverse Events (CTCAE) v5.0 and KDIGO Society. To identify predictive factors, we used Spearman's rank correlation coefficient. (3) Results: A substantial fraction of the patients already showed impaired renal function and reduced leukocyte counts at baseline. Under RLT, 11/49 (22\%) patients presented with nephrotoxicity CTCAE I or II according to creatinine, but 33/49 (67\%) according to eGFR. Only 5/42 (13\%) showed reduced TER, defined as <70\% of the age-adjusted mean normal values. Of all renal functional parameters, absolute changes of only 2\% were recorded. CTCAE-based re-categorization was infrequent, with creatinine worsening from I to II in 2/49 (4.1\%; GFR, 1/49 (2\%)). Similar results were recorded for KDIGO (G2 to G3a, 1/49 (2\%); G3a to G3b, 2/49 (4.1\%)). After three cycles, follow-up eGFR correlated negatively with age (r = -0.40, p = 0.005) and the eGFR change with Gleason score (r = -0.35, p < 0.05) at baseline. Leukocytopenia CTCAE II occurred only in 1/49 (2\%) (CTCAE I, 20/49 (41\%)) and CTCAE I thrombocytopenia in 7/49 (14\%), with an absolute decrease of 15.2\% and 16.6\% for leukocyte and platelet counts. Anemia CTCAE II occurred in 10/49 (20\%) (CTCAE I, 36/49 (73\%)) with a decrease in hemoglobin of 4.7\%. (4) Conclusions: After PSMA-targeted therapy using [\(^{177}\)Lu]Lu-PSMA I\&T, no severe (CTCAE III/IV) toxicities occurred, thereby demonstrating that serious adverse renal or hematological events are unlikely to be a frequent phenomenon with this agent.}, language = {en} } @article{HiguchiSerflingRoweetal.2022, author = {Higuchi, Takahiro and Serfling, Sebastian E. and Rowe, Steven P. and Werner, Rudolf A.}, title = {Therapeutic effects of lipid lowering medications on myocardial blood flow, inflammation, and sympathetic nerve activity using nuclear techniques}, series = {Current Cardiology Reports}, volume = {24}, journal = {Current Cardiology Reports}, number = {12}, doi = {10.1007/s11886-022-01792-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324599}, pages = {1849-1853}, year = {2022}, abstract = {Purpose of Review Statins are routinely applied in patients with coronary artery disease, as they allow significantly to reduce blood cholesterol levels. Although those drugs are endorsed by current guidelines and prescribed routinely, a substantial portion of patients are still statin-intolerant and image-piloted strategies may then be helpful to identify patients that need further intensified treatment, e.g., to initiate treatment with proprotein convertase subtilisin / kexin type 9 inhibitors (PCSK9i). In addition, it has also been advocated that statins exhibit nonlipid, cardio-protective effects including improved cardiac nerve integrity, blood flow, and anti-inflammatory effects in congestive heart failure (HF) patients. Recent Findings In subjects after myocardial infarction treated with statins, \(^{123}\)I-metaiodobenzylguanidine (MIBG) scintigraphy has already revealed enhanced cardiac nerve function relative to patients without statins. In addition, all of those aforementioned statin-targeted pathways in HF can be visualized and monitored using dedicated cardiac radiotracers, e.g., \(^{123}\)I-MIBG or \(^{18}\)F-AF78 (for cardiac nerve function), \(^{18}\)F-flurpiridaz (to determine coronary flow) or \(^{68}\)Ga-PentixaFor (to detect inflammation). Summary Statins exhibit various cardio-beneficial effects, including improvement of cardiac nerve function, blood flow, and reduction of inflammation, which can all be imaged using dedicated nuclear cardiac radiotracers. This may allow for in vivo monitoring of statin-induced cardioprotection beyond lipid profiling in HF patients.}, language = {en} } @article{HiguchiWerner2023, author = {Higuchi, Takahiro and Werner, Rudolf A.}, title = {Unfolding the cardioprotective potential of sigma-1 receptor-directed molecular imaging}, series = {Journal of Nuclear Cardiology}, volume = {30}, journal = {Journal of Nuclear Cardiology}, number = {2}, doi = {10.1007/s12350-022-03077-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324600}, pages = {662-664}, year = {2023}, abstract = {No abstract available.}, language = {en} } @article{HoffmannJanssenKannoetal.2020, author = {Hoffmann, Jan V. and Janssen, Jan P. and Kanno, Takayuki and Shibutani, Takayuki and Onoguchi, Masahisa and Lapa, Constantin and Grunz, Jan-Peter and Buck, Andreas K. and Higuchi, Takahiro}, title = {Performance evaluation of fifth-generation ultra-high-resolution SPECT system with two stationary detectors and multi-pinhole imaging}, series = {EJNMMI Physics}, volume = {7}, journal = {EJNMMI Physics}, doi = {10.1186/s40658-020-00335-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230361}, year = {2020}, abstract = {Background Small-animal single-photon emission computed tomography (SPECT) systems with multi-pinhole collimation and large stationary detectors have advantages compared to systems with moving small detectors. These systems benefit from less labour-intensive maintenance and quality control as fewer prone parts are moving, higher accuracy for focused scans and maintaining high resolution with increased sensitivity due to focused pinholes on the field of view. This study aims to investigate the performance of a novel ultra-high-resolution scanner with two-detector configuration (U-SPECT5-E) and to compare its image quality to a conventional micro-SPECT system with three stationary detectors (U-SPECT\(^+\)). Methods The new U-SPECT5-E with two stationary detectors was used for acquiring data with \(^{99m}\)Tc-filled point source, hot-rod and uniformity phantoms to analyse sensitivity, spatial resolution, uniformity and contrast-to-noise ratio (CNR). Three dedicated multi-pinhole mouse collimators with 75 pinholes each and 0.25-, 0.60- and 1.00-mm pinholes for extra ultra-high resolution (XUHR-M), general-purpose (GP-M) and ultra-high sensitivity (UHS-M) imaging were examined. For CNR analysis, four different activity ranges representing low- and high-count settings were investigated for all three collimators. The experiments for the performance assessment were repeated with the same GP-M collimator in the three-detector U-SPECT\(^+\) for comparison. Results Peak sensitivity was 237 cps/MBq (XUHR-M), 847 cps/MBq (GP-M), 2054 cps/MBq (UHS-M) for U-SPECT5-E and 1710 cps/MBq (GP-M) for U-SPECT\(^+\). In the visually analysed sections of the reconstructed mini Derenzo phantoms, rods as small as 0.35 mm (XUHR-M), 0.50 mm (GP-M) for the two-detector as well as the three-detector SPECT and 0.75 mm (UHS-M) were resolved. Uniformity for maximum resolution recorded 40.7\% (XUHR-M), 29.1\% (GP-M, U-SPECT5-E), 16.3\% (GP-M, U-SPECT\(^+\)) and 23.0\% (UHS-M), respectively. UHS-M reached highest CNR values for low-count images; for rods smaller than 0.45 mm, acceptable CNR was only achieved by XUHR-M. GP-M was superior for imaging rods sized from 0.60 to 1.50 mm for intermediate activity concentrations. U-SPECT5-E and U-SPECT+ both provided comparable CNR. Conclusions While uniformity and sensitivity are negatively affected by the absence of a third detector, the investigated U-SPECT5-E system with two stationary detectors delivers excellent spatial resolution and CNR comparable to the performance of an established three-detector-setup.}, language = {en} } @article{IpIsaiasKuscheTekinetal.2016, author = {Ip, Chi Wang and Isaias, Ioannis U. and Kusche-Tekin, Burak B. and Klein, Dennis and Groh, Janos and O´Leary, Aet and Knorr, Susanne and Higuchi, Takahiro and Koprich, James B. and Brotchie, Jonathan M. and Toyka, Klaus V. and Reif, Andreas and Volkmann, Jens}, title = {Tor1a+/- mice develop dystonia-like movements via a striatal dopaminergic dysregulation triggered by peripheral nerve injury}, series = {Acta Neuropathologica Communications}, volume = {4}, journal = {Acta Neuropathologica Communications}, number = {108}, doi = {10.1186/s40478-016-0375-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147839}, year = {2016}, abstract = {Isolated generalized dystonia is a central motor network disorder characterized by twisted movements or postures. The most frequent genetic cause is a GAG deletion in the Tor1a (DYT1) gene encoding torsinA with a reduced penetrance of 30-40 \% suggesting additional genetic or environmental modifiers. Development of dystonia-like movements after a standardized peripheral nerve crush lesion in wild type (wt) and Tor1a+/- mice, that express 50 \% torsinA only, was assessed by scoring of hindlimb movements during tail suspension, by rotarod testing and by computer-assisted gait analysis. Western blot analysis was performed for dopamine transporter (DAT), D1 and D2 receptors from striatal and quantitative RT-PCR analysis for DAT from midbrain dissections. Autoradiography was used to assess the functional DAT binding in striatum. Striatal dopamine and its metabolites were analyzed by high performance liquid chromatography. After nerve crush injury, we found abnormal posturing in the lesioned hindlimb of both mutant and wt mice indicating the profound influence of the nerve lesion (15x vs. 12x relative to control) resembling human peripheral pseudodystonia. In mutant mice the phenotypic abnormalities were increased by about 40 \% (p < 0.05). This was accompanied by complex alterations of striatal dopamine homeostasis. Pharmacological blockade of dopamine synthesis reduced severity of dystonia-like movements, whereas treatment with L-Dopa aggravated these but only in mutant mice suggesting a DYT1 related central component relevant to the development of abnormal involuntary movements. Our findings suggest that upon peripheral nerve injury reduced torsinA concentration and environmental stressors may act in concert in causing the central motor network dysfunction of DYT1 dystonia.}, language = {en} } @article{IsaiasSpiegelBrumbergetal.2014, author = {Isaias, Ioannis Ugo and Spiegel, J{\"o}rg and Brumberg, Joachim and Cosgrove, Kelly P. and Marotta, Giorgio and Oishi, Naoya and Higuchi, Takahiro and K{\"u}sters, Sebastian and Schiller, Markus and Dillmann, Ulrich and van Dyck, Christopher H. and Buck, Andreas and Herrmann, Ken and Schloegl, Susanne and Volkmann, Jens and Lassmann, Michael and Fassbender, Klaus and Lorenz, Reinhard and Samnick, Samuel}, title = {Nicotinic acetylcholine receptor density in cognitively intact subjects at an early stage of Parkinson's disease}, series = {Frontiers in Aging Neuroscience}, volume = {6}, journal = {Frontiers in Aging Neuroscience}, doi = {10.3389/fnagi.2014.00213}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119351}, pages = {213}, year = {2014}, abstract = {We investigated in vivo brain nicotinic acetylcholine receptor (nAChR) distribution in cognitively intact subjects with Parkinson's disease (PD) at an early stage of the disease. Fourteen patients and 13 healthy subjects were imaged with single photon emission computed tomography and the radiotracer 5-[(123)I]iodo-3-[2(S)-2-azetidinylmethoxy]pyridine ([(123)I]5IA). Patients were selected according to several criteria, including short duration of motor signs (<7 years) and normal scores at an extensive neuropsychological evaluation. In PD patients, nAChR density was significantly higher in the putamen, the insular cortex and the supplementary motor area and lower in the caudate nucleus, the orbitofrontal cortex, and the middle temporal gyrus. Disease duration positively correlated with nAChR density in the putamen ipsilateral (ρ = 0.56, p < 0.05) but not contralateral (ρ = 0.49, p = 0.07) to the clinically most affected hemibody. We observed, for the first time in vivo, higher nAChR density in brain regions of the motor and limbic basal ganglia circuits of subjects with PD. Our findings support the notion of an up-regulated cholinergic activity at the striatal and possibly cortical level in cognitively intact PD patients at an early stage of disease.}, language = {en} } @article{JanssenHoffmannKannoetal.2020, author = {Janssen, Jan P. and Hoffmann, Jan V. and Kanno, Takayuki and Nose, Naoko and Grunz, Jan-Peter and Onoguchi, Masahisa and Chen, Xinyu and Lapa, Constantin and Buck, Andreas K. and Higuchi, Takahiro}, title = {Capabilities of multi-pinhole SPECT with two stationary detectors for in vivo rat imaging}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, doi = {10.1038/s41598-020-75696-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230616}, year = {2020}, abstract = {We aimed to investigate the image quality of the U-SPECT5/CT E-Class a micro single-photon emission computed tomography (SPECT) system with two large stationary detectors for visualization of rat hearts and bones using clinically available \(^{99m}\)Tc-labelled tracers. Sensitivity, spatial resolution, uniformity and contrast-to-noise ratio (CNR) of the small-animal SPECT scanner were investigated in phantom studies using an ultra-high-resolution rat and mouse multi-pinhole collimator (UHR-RM). Point source, hot-rod, and uniform phantoms with \(^{99m}\)Tc-solution were scanned for high-count performance assessment and count levels equal to animal scans, respectively. Reconstruction was performed using the similarity-regulated ordered-subsets expectation maximization (SROSEM) algorithm with Gaussian smoothing. Rats were injected with similar to 100 MBq [\(^{99m}\)TcTc-MIBI or similar to 150 MBq [\(^{99m}\)Tc]Tc-HMDP and received multi-frame micro-SPECT imaging after tracer distribution. Animal scans were reconstructed for three different acquisition times and post-processed with different sized Gaussian filters. Following reconstruction, CNR was calculated and image quality evaluated by three independent readers on a five-point scale from 1="very poor" to 5="very good". Point source sensitivity was 567 cps/MBq and radioactive rods as small as 1.2 mm were resolved with the UHR-RM collimator. Collimator-dependent uniformity was 55.5\%. Phantom CNR improved with increasing rod size, filter size and activity concentration. Left ventricle and bone structures were successfully visualized in rat experiments. Image quality was strongly affected by the extent of post-filtering, whereas scan time did not have substantial influence on visual assessment. Good image quality was achieved for resolution range greater than 1.8 mm in bone and 2.8 mm in heart. The recently introduced small animal SPECT system with two stationary detectors and UHR-RM collimator is capable to provide excellent image quality in heart and bone scans in a rat using standardized reconstruction parameters and appropriate post-filtering. However, there are still challenges in achieving maximum system resolution in the sub-millimeter range with in vivo settings under limited injection dose and acquisition time.}, language = {en} } @article{JanzWalzCirnuetal.2024, author = {Janz, Anna and Walz, Katharina and Cirnu, Alexandra and Surjanto, Jessica and Urlaub, Daniela and Leskien, Miriam and Kohlhaas, Michael and Nickel, Alexander and Brand, Theresa and Nose, Naoko and W{\"o}rsd{\"o}rfer, Philipp and Wagner, Nicole and Higuchi, Takahiro and Maack, Christoph and Dudek, Jan and Lorenz, Kristina and Klopocki, Eva and Erg{\"u}n, S{\"u}leyman and Duff, Henry J. and Gerull, Brenda}, title = {Mutations in DNAJC19 cause altered mitochondrial structure and increased mitochondrial respiration in human iPSC-derived cardiomyocytes}, series = {Molecular Metabolism}, volume = {79}, journal = {Molecular Metabolism}, issn = {2212-8778}, doi = {10.1016/j.molmet.2023.101859}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350393}, year = {2024}, abstract = {Highlights • Loss of DNAJC19's DnaJ domain disrupts cardiac mitochondrial structure, leading to abnormal cristae formation in iPSC-CMs. • Impaired mitochondrial structures lead to an increased mitochondrial respiration, ROS and an elevated membrane potential. • Mutant iPSC-CMs show sarcomere dysfunction and a trend to more arrhythmias, resembling DCMA-associated cardiomyopathy. Background Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. Methods We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca\(^{2+}\) kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tv\(_{HeLa}\)). Results Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca\(^{2+}\) concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to β-adrenergic stimulation. Conclusions Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca\(^{2+}\) kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy.}, language = {en} } @article{KazuhinoWernerToriumietal.2018, author = {Kazuhino, Koshino and Werner, Rudolf A. and Toriumi, Fuijo and Javadi, Mehrbod S. and Pomper, Martin G. and Solnes, Lilja B. and Verde, Franco and Higuchi, Takahiro and Rowe, Steven P.}, title = {Generative Adversarial Networks for the Creation of Realistic Artificial Brain Magnetic Resonance Images}, series = {Tomography}, volume = {4}, journal = {Tomography}, number = {4}, doi = {10.18383/j.tom.2018.00042}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172185}, pages = {159-163}, year = {2018}, abstract = {Even as medical data sets become more publicly accessible, most are restricted to specific medical conditions. Thus, data collection for machine learning approaches remains challenging, and synthetic data augmentation, such as generative adversarial networks (GAN), may overcome this hurdle. In the present quality control study, deep convolutional GAN (DCGAN)-based human brain magnetic resonance (MR) images were validated by blinded radiologists. In total, 96 T1-weighted brain images from 30 healthy individuals and 33 patients with cerebrovascular accident were included. A training data set was generated from the T1-weighted images and DCGAN was applied to generate additional artificial brain images. The likelihood that images were DCGAN-created versus acquired was evaluated by 5 radiologists (2 neuroradiologists [NRs], vs 3 non-neuroradiologists [NNRs]) in a binary fashion to identify real vs created images. Images were selected randomly from the data set (variation of created images, 40\%-60\%). None of the investigated images was rated as unknown. Of the created images, the NRs rated 45\% and 71\% as real magnetic resonance imaging images (NNRs, 24\%, 40\%, and 44\%). In contradistinction, 44\% and 70\% of the real images were rated as generated images by NRs (NNRs, 10\%, 17\%, and 27\%). The accuracy for the NRs was 0.55 and 0.30 (NNRs, 0.83, 0.72, and 0.64). DCGAN-created brain MR images are similar enough to acquired MR images so as to be indistinguishable in some cases. Such an artificial intelligence algorithm may contribute to synthetic data augmentation for "data-hungry" technologies, such as supervised machine learning approaches, in various clinical applications.}, subject = {Magnetresonanztomografie}, language = {en} } @article{KosmalaSerflingDreheretal.2022, author = {Kosmala, Aleksander and Serfling, Sebastian E. and Dreher, Niklas and Lindner, Thomas and Schirbel, Andreas and Lapa, Constantin and Higuchi, Takahiro and Buck, Andreas K. and Weich, Alexander and Werner, Rudolf A.}, title = {Associations between normal organs and tumor burden in patients imaged with fibroblast activation protein inhibitor-directed positron emission tomography}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {11}, issn = {2072-6694}, doi = {10.3390/cancers14112609}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275154}, year = {2022}, abstract = {(1) Background: We aimed to quantitatively investigate [\(^{68}\)Ga]Ga-FAPI-04 uptake in normal organs and to assess a relationship with the extent of FAPI-avid tumor burden. (2) Methods: In this single-center retrospective analysis, thirty-four patients with solid cancers underwent a total of 40 [\(^{68}\)Ga]Ga-FAPI-04 PET/CT scans. Mean standardized uptake values (SUV\(_{mean}\)) for normal organs were established by placing volumes of interest (VOIs) in the heart, liver, spleen, pancreas, kidneys, and bone marrow. Total tumor burden was determined by manual segmentation of tumor lesions with increased uptake. For tumor burden, quantitative assessment included maximum SUV (SUV\(_{max}\)), tumor volume (TV), and fractional tumor activity (FTA = TV × SUV\(_{mean}\)). Associations between uptake in normal organs and tumor burden were investigated by applying Spearman's rank correlation coefficient. (3) Results: Median SUV\(_{mean}\) values were 2.15 in the pancreas (range, 1.05-9.91), 1.42 in the right (range, 0.57-3.06) and 1.41 in the left kidney (range, 0.73-2.97), 1.2 in the heart (range, 0.46-2.59), 0.86 in the spleen (range, 0.55-1.58), 0.65 in the liver (range, 0.31-2.11), and 0.57 in the bone marrow (range, 0.26-0.94). We observed a trend towards significance for uptake in the myocardium and tumor-derived SUV\(_{max}\) (ρ = 0.29, p = 0.07) and TV (ρ = -0.30, p = 0.06). No significant correlation was achieved for any of the other organs: SUV\(_{max}\) (ρ ≤ 0.1, p ≥ 0.42), TV (ρ ≤ 0.11, p ≥ 0.43), and FTA (ρ ≤ 0.14, p ≥ 0.38). In a sub-analysis exclusively investigating patients with high tumor burden, significant correlations of myocardial uptake with tumor SUV\(_{max}\) (ρ = 0.44; p = 0.03) and tumor-derived FTA with liver uptake (ρ = 0.47; p = 0.02) were recorded. (4) Conclusions: In this proof-of-concept study, quantification of [\(^{68}\)Ga]Ga-FAPI-04 PET showed no significant correlation between normal organs and tumor burden, except for a trend in the myocardium. Those preliminary findings may trigger future studies to determine possible implications for treatment with radioactive FAP-targeted drugs, as higher tumor load or uptake may not lead to decreased doses in the majority of normal organs.}, language = {en} }