@article{ZhouAllisonKuebleretal.2016, author = {Zhou, Sijie and Allison, Brendan Z. and K{\"u}bler, Andrea and Cichocki, Andrzej and Wang, Xingyu and Jin, Jing}, title = {Effects of Background Music on Objective and Subjective Performance Measures in an Auditory BCI}, series = {Frontiers in Computational Neuroscience}, volume = {10}, journal = {Frontiers in Computational Neuroscience}, number = {105}, doi = {10.3389/fncom.2016.00105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165101}, year = {2016}, abstract = {Several studies have explored brain computer interface (BCI) systems based on auditory stimuli, which could help patients with visual impairments. Usability and user satisfaction are important considerations in any BCI. Although background music can influence emotion and performance in other task environments, and many users may wish to listen to music while using a BCI, auditory, and other BCIs are typically studied without background music. Some work has explored the possibility of using polyphonic music in auditory BCI systems. However, this approach requires users with good musical skills, and has not been explored in online experiments. Our hypothesis was that an auditory BCI with background music would be preferred by subjects over a similar BCI without background music, without any difference in BCI performance. We introduce a simple paradigm (which does not require musical skill) using percussion instrument sound stimuli and background music, and evaluated it in both offline and online experiments. The result showed that subjects preferred the auditory BCI with background music. Different performance measures did not reveal any significant performance effect when comparing background music vs. no background. Since the addition of background music does not impair BCI performance but is preferred by users, auditory (and perhaps other) BCIs should consider including it. Our study also indicates that auditory BCIs can be effective even if the auditory channel is simultaneously otherwise engaged.}, language = {en} } @article{ErlbeckMochtyKuebleretal.2017, author = {Erlbeck, Helena and Mochty, Ursula and K{\"u}bler, Andrea and Real, Ruben G. L.}, title = {Circadian course of the P300 ERP in patients with amyotrophic lateral sclerosis - implications for brain-computer interfaces (BCI)}, series = {BMC Neurology}, volume = {17}, journal = {BMC Neurology}, number = {3}, doi = {10.1186/s12883-016-0782-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157423}, year = {2017}, abstract = {Background: Accidents or neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) can lead to progressing, extensive, and complete paralysis leaving patients aware but unable to communicate (locked-in state). Brain-computer interfaces (BCI) based on electroencephalography represent an important approach to establish communication with these patients. The most common BCI for communication rely on the P300, a positive deflection arising in response to rare events. To foster broader application of BCIs for restoring lost function, also for end-users with impaired vision, we explored whether there were specific time windows during the day in which a P300 driven BCI should be preferably applied. Methods: The present study investigated the influence of time of the day and modality (visual vs. auditory) on P300 amplitude and latency. A sample of 14 patients (end-users) with ALS and 14 healthy age matched volunteers participated in the study and P300 event-related potentials (ERP) were recorded at four different times (10, 12 am, 2, \& 4 pm) during the day. Results: Results indicated no differences in P300 amplitudes or latencies between groups (ALS patients v. healthy participants) or time of measurement. In the auditory condition, latencies were shorter and amplitudes smaller as compared to the visual condition. Conclusion: Our findings suggest applicability of EEG/BCI sessions in patients with ALS throughout normal waking hours. Future studies using actual BCI systems are needed to generalize these findings with regard to BCI effectiveness/efficiency and other times of day.}, language = {en} } @article{KleihHerwegKaufmannetal.2015, author = {Kleih, Sonja C. and Herweg, Andreas and Kaufmann, Tobias and Staiger-S{\"a}lzer, Pit and Gerstner, Natascha and K{\"u}bler, Andrea}, title = {The WIN-speller: a new intuitive auditory brain-computer interface spelling application}, series = {Frontiers in Neuroscience}, volume = {9}, journal = {Frontiers in Neuroscience}, doi = {10.3389/fnins.2015.00346}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125972}, pages = {346}, year = {2015}, abstract = {The objective of this study was to test the usability of a new auditory Brain-Computer Interface (BCI) application for communication. We introduce a word based, intuitive auditory spelling paradigm the WIN-speller. In the WIN-speller letters are grouped by words, such as the word KLANG representing the letters A, G, K, L, and N. Thereby, the decoding step between perceiving a code and translating it to the stimuli it represents becomes superfluous. We tested 11 healthy volunteers and four end-users with motor impairment in the copy spelling mode. Spelling was successful with an average accuracy of 84\% in the healthy sample. Three of the end-users communicated with average accuracies of 80\% or higher while one user was not able to communicate reliably. Even though further evaluation is required, the WIN-speller represents a potential alternative for BCI based communication in end-users.}, language = {en} }