@article{YanHongChenetal.2013, author = {Yan, Yan and Hong, Ni and Chen, Tiansheng and Li, Mingyou and Wang, Tiansu and Guan, Guijun and Qiao, Yongkang and Chen, Songlin and Schartl, Manfred and Li, Chang-Ming and Hong, Yunhan}, title = {p53 Gene Targeting by Homologous Recombination in Fish ES Cells}, series = {PLoS One}, volume = {8}, journal = {PLoS One}, number = {3}, doi = {10.1371/journal.pone.0059400}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133416}, pages = {e59400}, year = {2013}, abstract = {Background: Gene targeting (GT) provides a powerful tool for the generation of precise genetic alterations in embryonic stem (ES) cells to elucidate gene function and create animal models for human diseases. This technology has, however, been limited to mouse and rat. We have previously established ES cell lines and procedures for gene transfer and selection for homologous recombination (HR) events in the fish medaka (Oryzias latipes). Methodology and Principal Findings: Here we report HR-mediated GT in this organism. We designed a GT vector to disrupt the tumor suppressor gene p53 (also known as tp53). We show that all the three medaka ES cell lines, MES1 similar to MES3, are highly proficient for HR, as they produced detectable HR without drug selection. Furthermore, the positive-negative selection (PNS) procedure enhanced HR by similar to 12 folds. Out of 39 PNS-resistant colonies analyzed, 19 (48.7\%) were positive for GT by PCR genotyping. When 11 of the PCR-positive colonies were further analyzed, 6 (54.5\%) were found to be bona fide homologous recombinants by Southern blot analysis, sequencing and fluorescent in situ hybridization. This produces a high efficiency of up to 26.6\% for p53 GT under PNS conditions. We show that p53 disruption and long-term propagation under drug selection conditions do not compromise the pluripotency, as p53-targeted ES cells retained stable growth, undifferentiated phenotype, pluripotency gene expression profile and differentiation potential in vitro and in vivo. Conclusions: Our results demonstrate that medaka ES cells are proficient for HR-mediated GT, offering a first model organism of lower vertebrates towards the development of full ES cell-based GT technology.}, language = {en} } @article{WernerBoehmGohlke2013, author = {Werner, Birgit S. and Boehm, Dorota and Gohlke, Frank}, title = {Revision to reverse shoulder arthroplasty with retention of the humeral component Good outcome in 14 patients followed for a mean of 2.5 years}, series = {Acta Orthopaedica}, volume = {84}, journal = {Acta Orthopaedica}, number = {5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131621}, pages = {473-478}, year = {2013}, abstract = {Background: Revision in failed shoulder arthroplasty often requires removal of the humeral component with a significant risk of fracture and bone loss. Newer modular systems allow conversion from anatomic to reverse shoulder arthroplasty with retention of a well-fixed humeral stem. We report on a prospectively evaluated series of conversions from hemiarthroplasty to reverse shoulder arthroplasty. Methods: In 14 cases of failed hemiarthroplasty due to rotator cuff deficiency and painful pseudoparalysis (in 13 women), revision to reverse shoulder arthroplasty was performed between October 2006 and 2010, with retention of the humeral component using modular systems. Mean age at the time of operation was 70 (56-80) years. Pre- and postoperative evaluation followed a standardized protocol including Constant score, range of motion, and radiographic analysis. Mean follow-up time was 2.5 (2-5.5) years. Results: Mean Constant score improved from 9 (2-16) to 41 (17-74) points. Mean lengthening of the arm was 2.6 (0.9-4.7) cm without any neurological complications. One patient required revision due to infection. Interpretation Modular systems allow retainment of a well-fixed humeral stem with good outcome. There is a risk of excessive humeral lengthening.}, language = {en} }