@article{WildMarshallBocketal.2012, author = {Wild, J. M. and Marshall, H. and Bock, M. and Schad, L. R. and Jakob, P. M. and Puderbach, M. and Molinari, F. and Van Beek, E. J. R. and Biederer, J.}, title = {MRI of the lung (1/3): methods}, series = {Insights into Imaging}, volume = {3}, journal = {Insights into Imaging}, number = {4}, doi = {10.1007/s13244-012-0176-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124238}, pages = {345-353}, year = {2012}, abstract = {Proton magnetic resonance imaging (MRI) has recently emerged as a clinical tool to image the lungs. This paper outlines the current technical aspects of MRI pulse sequences, radiofrequency (RF) coils and MRI system requirements needed for imaging the pulmonary parenchyma and vasculature. Lung MRI techniques are presented as a "technical toolkit", from which MR protocols will be composed in the subsequent papers for comprehensive imaging of lung disease and function (parts 2 and 3). This paper is pitched at MR scientists, technicians and radiologists who are interested in understanding and establishing lung MRI methods. Images from a 1.5 T scanner are used for illustration of the sequences and methods that are highlighted. Main Messages • Outline of the hardware and pulse sequence requirements for proton lung MRI • Overview of pulse sequences for lung parenchyma, vascular and functional imaging with protons • Demonstration of the pulse-sequence building blocks for clinical lung MRI protocols}, language = {en} } @article{LanghauserHeilerGrudzenskietal.2012, author = {Langhauser, Friederike L. and Heiler, Patrick M. and Grudzenski, Saskia and Lemke, Andreas and Alonso, Angelika and Schad, Lothar R. and Hennerici, Michael G. and Meairs, Stephen and Fata, Marc}, title = {Thromboembolic stroke in C57BL/6 mice monitored by 9.4 T MRI using a 1H cryo probe}, series = {Experimental and Translational Stroke Medicine}, volume = {4}, journal = {Experimental and Translational Stroke Medicine}, number = {18}, doi = {10.1186/2040-7378-4-18}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124218}, year = {2012}, abstract = {Background A new thromboembolic animal model showed beneficial effects of t-PA with an infarct volume reduction of 36.8\% in swiss mice. Because knock-out animal experiments for stroke frequently used C57BL76 mice we evaluated t-PA effects in this mouse strain and measured infarct volume and vascular recanalisation in-vivo by using high-field 9.4 T MRI and a 1H surface cryo coil. Methods Clot formation was triggered by microinjection of murine thrombin into the right middle cerebral artery (MCA). Animals (n = 28) were treated with 10 mg/kg, 5 mg/kg or no tissue plasminogen activator (t-PA) 40 min after MCA occlusion. For MR-imaging a Bruker 9.4 T animal system with a 1H surface cryo probe was used and a T2-weighted RARE sequence, a diffusion weighted multishot EPI sequence and a 3D flow-compensated gradient echo TOF angiography were performed. Results The infarct volume in animals treated with t-PA was significantly reduced (0.67 ± 1.38 mm3 for 10 mg/kg and 10.9 ± 8.79 mm3 for 5 mg/kg vs. 19.76 ± 2.72 mm3 ; p < 0.001) compared to untreated mice. An additional group was reperfused with t-PA inside the MRI. Already ten minutes after beginning of t-PA treatment, reperfusion flow was re-established in the right MCA. However, signal intensity was lower than in the contralateral MCA. This reduction in cerebral blood flow was attenuated during the first 60 minutes after reperfusion. 24 h after MCA occlusion and reperfusion, no difference in signal intensity of the contralateral and ipsilateral MCAs was observed. Conclusions We confirm a t-Pa effect using this stroke model in the C57BL76 mouse strain and demonstrate a chronological sequence MRI imaging after t-PA using a 1H surface cryo coil in a 9.4 T MRI. This setting will allow testing of new thrombolytic strategies for stroke treatment in-vivo in C57BL76 knock-out mice.}, language = {en} } @article{MirasSeyfriedPhinikaridouetal.2014, author = {Miras, Alexander D. and Seyfried, Florian and Phinikaridou, Alkystis and Andia, Marcelo E. and Christakis, Ioannis and Spector, Alan C. and Botnar, Rene M. and le Roux, Carel W.}, title = {Rats Fed Diets with Different Energy Contribution from Fat Do Not Differ in Adiposity}, series = {OBESITY FACTS}, volume = {7}, journal = {OBESITY FACTS}, number = {5}, doi = {10.1159/000368622}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115249}, pages = {302-310}, year = {2014}, abstract = {Objective: To determine whether rats reaching the same body mass, having been fed either a low-fat (LFD) or a high-fat diet (HFD), differ in white adipose tissue (WAT) deposition. Methods: In experiment 1, 22 Sprague-Dawley rats of the same age were divided into 11 rats with body mass below the batch median and fed a HFD, and 11 above the median and fed a LFD. In experiment 2, 20 Sprague-Dawley rats of the same age and starting body mass were randomised to either a HFD or LFD. When all groups reached similar final body mass, WAT was quantified using magnetic resonance imaging (MRI), dissection, and plasma leptin. Results: In experiment 1, both groups reached similar final body mass at the same age; in experiment 2 the HFD group reached similar final body mass earlier than the LFD group. There were no significant differences in WAT as assessed by MRI or leptin between the HFD and LFD groups in both experiments. Dissection revealed a trend for higher retroperitoneal and epididymal adiposity in the HFD groups in both experiments. Conclusions: We conclude that at similar body mass, adiposity is independent of the macronutrient composition of the feeding regimen used to achieve it. (C) 2014 S Karger GmbH, Freiburg}, language = {en} } @article{KleinschnitzMenclGarzetal.2013, author = {Kleinschnitz, Christoph and Mencl, Stine and Garz, Cornelia and Niklass, Solveig and Braun, Holger and G{\"o}b, Eva and Homola, Gy{\"o}rgy and Heinze, Hans-Jochen and Reymann, Klaus G. and Schreiber, Stefanie}, title = {Early microvascular dysfunction in cerebral small vessel disease is not detectable on 3.0 Tesla magnetic resonance imaging: a longitudinal study in spontaneously hypertensive stroke-prone rats}, series = {Experimental \& Translational Stroke Medicine}, journal = {Experimental \& Translational Stroke Medicine}, doi = {10.1186/2040-7378-5-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97056}, year = {2013}, abstract = {Background Human cerebral small vessel disease (CSVD) has distinct histopathologic and imaging findings in its advanced stages. In spontaneously hypertensive stroke-prone rats (SHRSP), a well-established animal model of CSVD, we recently demonstrated that cerebral microangiopathy is initiated by early microvascular dysfunction leading to the breakdown of the blood-brain barrier and an activated coagulatory state resulting in capillary and arteriolar erythrocyte accumulations (stases). In the present study, we investigated whether initial microvascular dysfunction and other stages of the pathologic CSVD cascade can be detected by serial magnetic resonance imaging (MRI). Findings Fourteen SHRSP and three control (Wistar) rats (aged 26-44 weeks) were investigated biweekly by 3.0 Tesla (3 T) MRI. After perfusion, brains were stained with hematoxylin-eosin and histology was correlated with MRI data. Three SHRSP developed terminal CSVD stages including cortical, hippocampal, and striatal infarcts and macrohemorrhages, which could be detected consistently by MRI. Corresponding histology showed small vessel thromboses and increased numbers of small perivascular bleeds in the infarcted areas. However, 3 T MRI failed to visualize intravascular erythrocyte accumulations, even in those brain regions with the highest densities of affected vessels and the largest vessels affected by stases, as well as failing to detect small perivascular bleeds. Conclusion Serial MRI at a field strength of 3 T failed to detect the initial microvascular dysfunction and subsequent small perivascular bleeds in SHRSP; only terminal stages of cerebral microangiopathy were reliably detected. Further investigations at higher magnetic field strengths (7 T) using blood- and flow-sensitive sequences are currently underway.}, language = {en} } @article{BeckerSchmidtkeStoeberetal.1994, author = {Becker, T. and Schmidtke, A. and St{\"o}ber, Gerald and Franzek, E. and Teichmann, E. and Hofmann, E.}, title = {Hyperintense Marklagerl{\"a}sionen bei psychiatrischen Patienten: r{\"a}umliche Verteilung und psychopathologische Symptome}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78288}, year = {1994}, abstract = {In einem Kollektiv von 130 MR-tomographisch untersuchten psychiatrischen Patienten (axiale T2-SE-Sequenz) wurden Zahl und r{\"a}umliche Verteilung von hyperintensen Marklagerl{\"a}sionen ("white matter lesions"; WM L) erfaßt und die Ventricle-to-brain-Ratio (VBR) bestimmt. Eine Konfigurationsfrequenzanalyse auf der Grundlage der r{\"a}umlichen WMLVerteilung erlaubte die Abgrenzung von vier Patientengruppen: 1. keine WML (n = 35), 2. WML rechts frontotemporal (n = 23), 3. WML bifrontal (n = 12), 4. WML ubiquit{\"a}r (n = 16). Die w{\"a}hrend 3 Jahren beobachteten psychopathologischen Symptome dieser Patienten wurden retrospektiv nach dem AMDP-Systemdokumentiert. In der Gruppe mit ubiquit{\"a}ren WML {\"u}berwogen organisch-psychopathologische Ttems, die VER war gr{\"o}ßer als in den anderen Gruppen (ANOVA;p < 0,001). Die r{\"a}umliche W M L- Verteilung erkl{\"a}rte 10,24 \% der Gesamtvarianz psychopathologischer M erkmalsverteilung in den Gruppen. Das Patientenalter (MANCOVA; p < 0,021), nicht aber die VER hattesignifikanten Einfluß auf das psychopathologische Symptomprofil. Nach Ausblendung der Patientengruppe mit ubiquit{\"a}ren WMLblieb der Einfluß der WML-Verteilung auf die psychopathologische Symptomatiksignifikantc (p <0,05). Bifrontale WML waren mit Denkst{\"o}rung, rechts frontotemporale WML mit affektiven Symptomen assoziiert. Die Befunde sprechen f{\"u}r einen Einfluß der r{\"a}umlichen Verteilung unspezifischer Marklagerl{\"a}sionen auf die psychopathologische Symptomatik.}, subject = {Medizin}, language = {de} }