@article{PhilippAbbrederisHerrmannKnopetal.2015, author = {Philipp-Abbrederis, Kathrin and Herrmann, Ken and Knop, Stefan and Schottelius, Margret and Eiber, Matthias and L{\"u}ckerath, Katharina and Pietschmann, Elke and Habringer, Stefan and Gerngroß, Carlos and Franke, Katharina and Rudelius, Martina and Schirbel, Andreas and Lapa, Constantin and Schwamborn, Kristina and Steidle, Sabine and Hartmann, Elena and Rosenwald, Andreas and Kropf, Saskia and Beer, Ambros J and Peschel, Christian and Einsele, Hermann and Buck, Andreas K and Schwaiger, Markus and G{\"o}tze, Katharina and Wester, Hans-J{\"u}rgen and Keller, Ulrich}, title = {In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma}, series = {EMBO Molecular Medicine}, volume = {7}, journal = {EMBO Molecular Medicine}, number = {4}, doi = {10.15252/emmm.201404698}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148738}, pages = {477-487}, year = {2015}, abstract = {CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination andpoor prognosis. We evaluated the novel CXCR4 probe [\(^{68}\)Ga]Pentixafor for invivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [\(^{68}\)Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [\(^{68}\)Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [\(^{18}\)F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34\(^{+}\) flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [\(^{68}\)Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases.}, language = {en} } @article{GieselKratochwilSchlittenhardtetal.2021, author = {Giesel, Frederik L. and Kratochwil, Clemens and Schlittenhardt, Joel and Dendl, Katharina and Eiber, Matthias and Staudinger, Fabian and Kessler, Lukas and Fendler, Wolfgang P. and Lindner, Thomas and Koerber, Stefan A. and Cardinale, Jens and Sennung, David and Roehrich, Manuel and Debus, Juergen and Sathekge, Mike and Haberkorn, Uwe and Calais, Jeremie and Serfling, Sebastian and Buck, Andreas L.}, title = {Head-to-head intra-individual comparison of biodistribution and tumor uptake of \(^{68}\)Ga-FAPI and \(^{18}\)F-FDG PET/CT in cancer patients}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, volume = {48}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, number = {13}, issn = {1619-7070}, doi = {10.1007/s00259-021-05307-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-307252}, pages = {4377-4385}, year = {2021}, abstract = {Purpose FAPI ligands (fibroblast activation protein inhibitor), a novel class of radiotracers for PET/CT imaging, demonstrated in previous studies rapid and high tumor uptake. The purpose of this study is the head-to-head intra-individual comparison of \(^{68}\)Ga-FAPI versus standard-of-care \(^{18}\)F-FDG in PET/CT in organ biodistribution and tumor uptake in patients with various cancers. Material and Methods This international retrospective multicenter analysis included PET/CT data from 71 patients from 6 centers who underwent both \(^{68}\)Ga-FAPI and \(^{18}\)F-FDG PET/CT within a median time interval of 10 days (range 1-89 days). Volumes of interest (VOIs) were manually drawn in normal organs and tumor lesions to quantify tracer uptake by SUVmax and SUVmean. Furthermore, tumor-to-background ratios (TBR) were generated (SUVmax tumor/ SUVmax organ). Results A total of 71 patients were studied of, which 28 were female and 43 male (median age 60). In 41 of 71 patients, the primary tumor was present. Forty-three of 71 patients exhibited 162 metastatic lesions. \(^{68}\)Ga-FAPI uptake in primary tumors and metastases was comparable to 18F-FDG in most cases. The SUVmax was significantly lower for \(^{68}\)Ga-FAPI than \(^{18}\)F-FDG in background tissues such as the brain, oral mucosa, myocardium, blood pool, liver, pancreas, and colon. Thus, \(^{68}\)Ga-FAPI TBRs were significantly higher than 18F-FDG TBRs in some sites, including liver and bone metastases. Conclusion Quantitative tumor uptake is comparable between \(^{68}\)Ga-FAPI and \(^{18}\)F-FDG, but lower background uptake in most normal organs results in equal or higher TBRs for \(^{68}\)Ga-FAPI. Thus, \(^{68}\)Ga-FAPI PET/CT may yield improved diagnostic information in various cancers and especially in tumor locations with high physiological \(^{18}\)F-FDG uptake.}, language = {en} }