@article{DornelasAntaoMoyesetal.2018, author = {Dornelas, Maria and Ant{\~a}o, Laura H. and Moyes, Faye and Bates, Amanda E. and Magurran, Anne E. and Adam, Dušan and Akhmetzhanova, Asem A. and Appeltans, Ward and Arcos, Jos{\´e} Manuel and Arnold, Haley and Ayyappan, Narayanan and Badihi, Gal and Baird, Andrew H. and Barbosa, Miguel and Barreto, Tiago Egydio and B{\"a}ssler, Claus and Bellgrove, Alecia and Belmaker, Jonathan and Benedetti-Cecchi, Lisandro and Bett, Brian J. and Bjorkman, Anne D. and Błażewicz, Magdalena and Blowes, Shane A. and Bloch, Christopher P. Bloch and Bonebrake, Timothy C. and Boyd, Susan and Bradford, Matt and Brooks, Andrew J. and Brown, James H. and Bruelheide, Helge and Budy, Phaedra and Carvalho, Fernando and Casta{\~n}eda-Moya, Edward and Chen, Chaolun Allen and Chamblee, John F. and Chase, Tory J. and Siegwart Collier, Laura and Collinge, Sharon K. and Condit, Richard and Cooper, Elisabeth J. and Cornelissen, J. Hans C. and Cotano, Unai and Crow, Shannan Kyle and Damasceno, Gabriella and Davies, Claire H. and Davis, Robert A. and Day, Frank P. and Degraer, Steven and Doherty, Tim S. and Dunn, Timothy E. and Durigan, Giselda and Duffy, J. Emmett and Edelist, Dor and Edgar, Graham J. and Elahi, Robin and Elmendorf, Sarah C. and Enemar, Anders and Ernest, S. K. Morgan and Escribano, Rub{\´e}n and Estiarte, Marc and Evans, Brian S. and Fan, Tung-Yung and Turini Farah, Fabiano and Loureiro Fernandes, Luiz and Farneda, F{\´a}bio Z. and Fidelis, Alessandra and Fitt, Robert and Fosaa, Anna Maria and Franco, Geraldo Antonio Daher Correa and Frank, Grace E. and Fraser, William R. and Garc{\´i}a, Hernando and Cazzolla Gatti, Roberto and Givan, Or and Gorgone-Barbosa, Elizabeth and Gould, William A. and Gries, Corinna and Grossman, Gary D. and Gutierr{\´e}z, Julio R. and Hale, Stephen and Harmon, Mark E. and Harte, John and Haskins, Gary and Henshaw, Donald L. and Hermanutz, Luise and Hidalgo, Pamela and Higuchi, Pedro and Hoey, Andrew and Van Hoey, Gert and Hofgaard, Annika and Holeck, Kristen and Hollister, Robert D. and Holmes, Richard and Hoogenboom, Mia and Hsieh, Chih-hao and Hubbell, Stephen P. and Huettmann, Falk and Huffard, Christine L. and Hurlbert, Allen H. and Ivanauskas, Nat{\´a}lia Macedo and Jan{\´i}k, David and Jandt, Ute and Jażdżewska, Anna and Johannessen, Tore and Johnstone, Jill and Jones, Julia and Jones, Faith A. M. and Kang, Jungwon and Kartawijaya, Tasrif and Keeley, Erin C. and Kelt, Douglas A. and Kinnear, Rebecca and Klanderud, Kari and Knutsen, Halvor and Koenig, Christopher C. and Kortz, Alessandra R. and Kr{\´a}l, Kamil and Kuhnz, Linda A. and Kuo, Chao-Yang and Kushner, David J. and Laguionie-Marchais, Claire and Lancaster, Lesley T. and Lee, Cheol Min and Lefcheck, Jonathan S. and L{\´e}vesque, Esther and Lightfoot, David and Lloret, Francisco and Lloyd, John D. and L{\´o}pez-Baucells, Adri{\`a} and Louzao, Maite and Madin, Joshua S. and Magn{\´u}sson, Borgþ{\´o}r and Malamud, Shahar and Matthews, Iain and McFarland, Kent P. and McGill, Brian and McKnight, Diane and McLarney, William O. and Meador, Jason and Meserve, Peter L. and Metcalfe, Daniel J. and Meyer, Christoph F. J. and Michelsen, Anders and Milchakova, Nataliya and Moens, Tom and Moland, Even and Moore, Jon and Moreira, Carolina Mathias and M{\"u}ller, J{\"o}rg and Murphy, Grace and Myers-Smith, Isla H. and Myster, Randall W. and Naumov, Andrew and Neat, Francis and Nelson, James A. and Nelson, Michael Paul and Newton, Stephen F. and Norden, Natalia and Oliver, Jeffrey C. and Olsen, Esben M. and Onipchenko, Vladimir G. and Pabis, Krzysztof and Pabst, Robert J. and Paquette, Alain and Pardede, Sinta and Paterson, David M. and P{\´e}lissier, Rapha{\"e}l and Pe{\~n}uelas, Josep and P{\´e}rez-Matus, Alejandro and Pizarro, Oscar and Pomati, Francesco and Post, Eric and Prins, Herbert H. T. and Priscu, John C. and Provoost, Pieter and Prudic, Kathleen L. and Pulliainen, Erkki and Ramesh, B. R. and Ramos, Olivia Mendivil and Rassweiler, Andrew and Rebelo, Jose Eduardo and Reed, Daniel C. and Reich, Peter B. and Remillard, Suzanne M. and Richardson, Anthony J. and Richardson, J. Paul and van Rijn, Itai and Rocha, Ricardo and Rivera-Monroy, Victor H. and Rixen, Christian and Robinson, Kevin P. and Rodrigues, Ricardo Ribeiro and de Cerqueira Rossa-Feres, Denise and Rudstam, Lars and Ruhl, Henry and Ruz, Catalina S. and Sampaio, Erica M. and Rybicki, Nancy and Rypel, Andrew and Sal, Sofia and Salgado, Beatriz and Santos, Flavio A. M. and Savassi-Coutinho, Ana Paula and Scanga, Sara and Schmidt, Jochen and Schooley, Robert and Setiawan, Fakhrizal and Shao, Kwang-Tsao and Shaver, Gaius R. and Sherman, Sally and Sherry, Thomas W. and Siciński, Jacek and Sievers, Caya and da Silva, Ana Carolina and da Silva, Fernando Rodrigues and Silveira, Fabio L. and Slingsby, Jasper and Smart, Tracey and Snell, Sara J. and Soudzilovskaia, Nadejda A. and Souza, Gabriel B. G. and Souza, Flaviana Maluf and Souza, Vin{\´i}cius Castro and Stallings, Christopher D. and Stanforth, Rowan and Stanley, Emily H. and Sterza, Jos{\´e} Mauro and Stevens, Maarten and Stuart-Smith, Rick and Suarez, Yzel Rondon and Supp, Sarah and Tamashiro, Jorge Yoshio and Tarigan, Sukmaraharja and Thiede, Gary P. and Thorn, Simon and Tolvanen, Anne and Toniato, Maria Teresa Zugliani and Totland, {\O}rjan and Twilley, Robert R. and Vaitkus, Gediminas and Valdivia, Nelson and Vallejo, Martha Isabel and Valone, Thomas J. and Van Colen, Carl and Vanaverbeke, Jan and Venturoli, Fabio and Verheye, Hans M. and Vianna, Marcelo and Vieira, Rui P. and Vrška, Tom{\´a}š and Vu, Con Quang and Vu, Lien Van and Waide, Robert B. and Waldock, Conor and Watts, Dave and Webb, Sara and Wesołowski, Tomasz and White, Ethan P. and Widdicombe, Claire E. and Wilgers, Dustin and Williams, Richard and Williams, Stefan B. and Williamson, Mark and Willig, Michael R. and Willis, Trevor J. and Wipf, Sonja and Woods, Kerry D. and Woehler, Eric J. and Zawada, Kyle and Zettler, Michael L.}, title = {BioTIME: A database of biodiversity time series for the Anthropocene}, series = {Global Ecology and Biogeography}, volume = {27}, journal = {Global Ecology and Biogeography}, doi = {10.1111/geb.12729}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222846}, pages = {760-786}, year = {2018}, abstract = {Motivation The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2). Time period and grain BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. Software format .csv and .SQL.}, language = {en} } @article{ZieglerMeyerOtteetal.2022, author = {Ziegler, Alice and Meyer, Hanna and Otte, Insa and Peters, Marcell K. and Appelhans, Tim and Behler, Christina and B{\"o}hning-Gaese, Katrin and Classen, Alice and Detsch, Florian and Deckert, J{\"u}rgen and Eardley, Connal D. and Ferger, Stefan W. and Fischer, Markus and Gebert, Friederike and Haas, Michael and Helbig-Bonitz, Maria and Hemp, Andreas and Hemp, Claudia and Kakengi, Victor and Mayr, Antonia V. and Ngereza, Christine and Reudenbach, Christoph and R{\"o}der, Juliane and Rutten, Gemma and Schellenberger Costa, David and Schleuning, Matthias and Ssymank, Axel and Steffan-Dewenter, Ingolf and Tardanico, Joseph and Tschapka, Marco and Vollst{\"a}dt, Maximilian G. R. and W{\"o}llauer, Stephan and Zhang, Jie and Brandl, Roland and Nauss, Thomas}, title = {Potential of airborne LiDAR derived vegetation structure for the prediction of animal species richness at Mount Kilimanjaro}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {3}, issn = {2072-4292}, doi = {10.3390/rs14030786}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262251}, year = {2022}, abstract = {The monitoring of species and functional diversity is of increasing relevance for the development of strategies for the conservation and management of biodiversity. Therefore, reliable estimates of the performance of monitoring techniques across taxa become important. Using a unique dataset, this study investigates the potential of airborne LiDAR-derived variables characterizing vegetation structure as predictors for animal species richness at the southern slopes of Mount Kilimanjaro. To disentangle the structural LiDAR information from co-factors related to elevational vegetation zones, LiDAR-based models were compared to the predictive power of elevation models. 17 taxa and 4 feeding guilds were modeled and the standardized study design allowed for a comparison across the assemblages. Results show that most taxa (14) and feeding guilds (3) can be predicted best by elevation with normalized RMSE values but only for three of those taxa and two of those feeding guilds the difference to other models is significant. Generally, modeling performances between different models vary only slightly for each assemblage. For the remaining, structural information at most showed little additional contribution to the performance. In summary, LiDAR observations can be used for animal species prediction. However, the effort and cost of aerial surveys are not always in proportion with the prediction quality, especially when the species distribution follows zonal patterns, and elevation information yields similar results.}, language = {en} } @article{MolinasGonzalezCastroGonzalezMegiasetal.2019, author = {Molinas-Gonz{\´a}lez, Carlos R. and Castro, Jorge and Gonz{\´a}lez-Meg{\´i}as, Adela and Leverkus, Alexandro B.}, title = {Effects of post-fire deadwood management on soil macroarthropod communities}, series = {Forests}, volume = {10}, journal = {Forests}, number = {11}, issn = {1999-4907}, doi = {10.3390/f10111046}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193079}, year = {2019}, abstract = {Dead wood comprises a vast amount of biological legacies that set the scene for ecological regeneration after wildfires, yet its removal is the most frequent management strategy worldwide. Soil-dwelling organisms are conspicuous, and they provide essential ecosystem functions, but their possible affection by different post-fire management strategies has so far been neglected. We analyzed the abundance, richness, and composition of belowground macroarthropod communities under two contrasting dead-wood management regimes after a large wildfire in the Sierra Nevada Natural and National Park (Southeast Spain). Two plots at different elevation were established, each containing three replicates of two experimental treatments: partial cut, where trees were cut and their branches lopped off and left over the ground, and salvage logging, where all the trees were cut, logs were piled, branches were mechanically masticated, and slash was spread on the ground. Ten years after the application of the treatments, soil cores were extracted from two types of microhabitat created by these treatments: bare-soil (in both treatments) and under-logs (in the partial cut treatment only). Soil macroarthropod assemblages were dominated by Hemiptera and Hymenoptera (mostly ants) and were more abundant and richer in the lowest plot. The differences between dead-wood treatments were most evident at the scale of management interventions: abundance and richness were lowest after salvage logging, even under similar microhabitats (bare-soil). However, there were no significant differences between microhabitat types on abundance and richness within the partial cut treatment. Higher abundance and richness in the partial cut treatment likely resulted from higher resource availability and higher plant diversity after natural regeneration. Our results suggest that belowground macroarthropod communities are sensitive to the manipulation of dead-wood legacies and that management through salvage logging could reduce soil macroarthropod recuperation compared to other treatments with less intense management even a decade after application.}, language = {en} } @article{MayrPetersEardleyetal.2020, author = {Mayr, Antonia V. and Peters, Marcell K. and Eardley, Connal D. and Renner, Marion E. and R{\"o}der, Juliane and Steffan-Dewenter, Ingolf}, title = {Climate and food resources shape species richness and trophic interactions of cavity-nesting Hymenoptera}, series = {Journal of Biogeography}, volume = {47}, journal = {Journal of Biogeography}, number = {4}, doi = {10.1111/jbi.13753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208101}, pages = {854-865}, year = {2020}, abstract = {Aim: Temperature, food resources and top-down regulation by antagonists are considered as major drivers of insect diversity, but their relative importance is poorly understood. Here, we used cavity-nesting communities of bees, wasps and their antagonists to reveal the role of temperature, food resources, parasitism rate and land use as drivers of species richness at different trophic levels along a broad elevational gradient. Location: Mt. Kilimanjaro, Tanzania. Taxon: Cavity-nesting Hymenoptera (Hymenoptera: Apidae, Colletidae, Megachilidae, Crabronidae, Sphecidae, Pompilidae, Vespidae). Methods: We established trap nests on 25 study sites that were distributed over similar large distances in terms of elevation along an elevational gradient from 866 to 1788 m a.s.l., including both natural and disturbed habitats. We quantified species richness and abundance of bees, wasps and antagonists, parasitism rates and flower or arthropod food resources. Data were analysed with generalized linear models within a multi-model inference framework. Results: Elevational species richness patterns changed with trophic level from monotonically declining richness of bees to increasingly humped-shaped patterns for caterpillar-hunting wasps, spider-hunting wasps and antagonists. Parasitism rates generally declined with elevation but were higher for wasps than for bees. Temperature was the most important predictor of both bee and wasp host richness patterns. Antagonist richness patterns were also well predicted by temperature, but in contrast to host richness patterns, additionally by resource abundance and diversity. The conversion of natural habitats through anthropogenic land use, which included biomass removal, agricultural inputs, vegetation structure and percentage of surrounding agricultural habitats, had no significant effects on bee and wasp communities. Main conclusions: Our study underpins the importance of temperature as a main driver of diversity gradients in ectothermic organisms and reveals the increasingly important role of food resources at higher trophic levels. Higher parasitism rates at higher trophic levels and at higher temperatures indicated that the relative importance of bottom-up and top-down drivers of species richness change across trophic levels and may respond differently to future climate change.}, language = {en} } @article{BoetzlRiesSchneideretal.2018, author = {Boetzl, Fabian A. and Ries, Elena and Schneider, Gudrun and Krauss, Jochen}, title = {It's a matter of design - how pitfall trap design affects trap samples and possible predictions}, series = {PeerJ}, volume = {6}, journal = {PeerJ}, number = {e5078}, doi = {10.7717/peerj.5078}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176870}, year = {2018}, abstract = {Background: Pitfall traps are commonly used to assess ground dwelling arthropod communities. The effects of different pitfall trap designs on the trapping outcome are poorly investigated however they might affect conclusions drawn from pitfall trap data greatly. Methods: We tested four pitfall trap types which have been used in previous studies for their effectiveness: a simple type, a faster exchangeable type with an extended plastic rim plate and two types with guidance barriers (V- and X-shaped). About 20 traps were active for 10 weeks and emptied biweekly resulting in 100 trap samples. Results: Pitfall traps with guidance barriers were up to five times more effective than simple pitfall traps and trap samples resulted in more similar assemblage approximations. Pitfall traps with extended plastic rim plates did not only perform poorly but also resulted in distinct carabid assemblages with less individuals of small species and a larger variation. Discussion: Due to the obvious trait filtering and resulting altered assemblages, we suggest not to use pitfall traps with extended plastic rim plates. In comprehensive biodiversity inventories, a smaller number of pitfall traps with guidance barriers and a larger number of spatial replicates is of advantage, while due to comparability reasons, the use of simple pitfall traps will be recommended in most other cases.}, language = {en} } @article{DossoYeoKonateetal.2012, author = {Dosso, Kanvaly and Yeo, Kolo and Konate, Souleymane and Linsenmair, Karl Eduard}, title = {Importance of protected areas for biodiversity conservation in central Cote d'Ivoire: Comparison of termite assemblages between two neighboring areas under differing levels of disturbance}, series = {Journal of Insect Science}, volume = {12}, journal = {Journal of Insect Science}, number = {131}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133218}, year = {2012}, abstract = {To highlight human impact on biodiversity in the Lamto region, termites were studied with regard to their use as bio-indicators of habitat change in the tropics. Using a standardized method, termites were sampled in the three most common habitat types, i.e., in semi-deciduous forest, savanna woodland, and annually burned savanna, all inside Lamto Reserve and its surrounding rural domain. Termite species richness fell from 25 species in the Lamto forest to 13 species in the rural area, involving strong modification in the species composition (species turnover = 59 \%). In contrast, no significant change in diversity was found between the Lamto savannas and the rural ones. In addition, the relative abundance of termites showed a significantly greater decline in the rural domain, even in the species Ancistrotermes cavithorax (Sjostedt) (Isoptera: Termitidae), which is known to be ecologically especially versatile. Overall, the findings of this study suggest further investigation around Lamto Reserve on the impact of human activities on biodiversity, focusing on forest conversion to land uses (e.g. agricultural and silvicultural systems).}, language = {en} } @article{BassetCizekCuenoudetal.2015, author = {Basset, Yves and Cizek, Lukas and Cu{\´e}noud, Philippe and Didham, Raphael K. and Novotny, Vojtech and {\O}degaard, Frode and Roslin, Tomas and Tishechkin, Alexey K. and Schmidl, J{\"u}rgen and Winchester, Neville N. and Roubik, David W. and Aberlenc, Henri-Pierre and Bail, Johannes and Barrios, Hector and Bridle, Jonathan R. and Casta{\~n}o-Meneses, Gabriela and Corbara, Bruno and Curletti, Gianfranco and da Rocha, Wesley Duarte and De Bakker, Domir and Delabie, Jacques H. C. and Dejean, Alain and Fagan, Laura L. and Floren, Andreas and Kitching, Roger L. and Medianero, Enrique and de Oliveira, Evandro Gama and Orivel, Jerome and Pollet, Marc and Rapp, Mathieu and Ribeiro, Servio P. and Roisin, Yves and Schmidt, Jesper B. and S{\o}rensen, Line and Lewinsohn, Thomas M. and Leponce, Maurice}, title = {Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {12}, doi = {10.1371/journal.pone.0144110}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136393}, pages = {e0144110}, year = {2015}, abstract = {Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods.}, language = {en} } @article{BartomeusPottsSteffanDewenteretal.2014, author = {Bartomeus, Ignasi and Potts, Simon G. and Steffan-Dewenter, Ingolf and Vaissiere, Bernard E. and Woyciechowski, Michal and Krewenka, Kristin M. and Tscheulin, Thomas and Roberts, Stuart P. M. and Szentgyoergyi, Hajnalka and Westphal, Catrin and Bommarco, Riccardo}, title = {Contribution of insect pollinators to crop yield and quality varies with agricultural intensification}, series = {PEERJ}, volume = {2}, journal = {PEERJ}, number = {e328}, issn = {2167-9843}, doi = {10.7717/peerj.328}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116928}, year = {2014}, abstract = {Background. Up to 75\% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71\% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations.}, language = {en} }