@article{HicklHeintzBuschartTrautweinSchultetal.2019, author = {Hickl, Oskar and Heintz-Buschart, Anna and Trautwein-Schult, Anke and Hercog, Rajna and Bork, Peer and Wilmes, Paul and Becher, D{\"o}rte}, title = {Sample preservation and storage significantly impact taxonomic and functional profiles in metaproteomics studies of the human gut microbiome}, series = {Microorganisms}, volume = {7}, journal = {Microorganisms}, number = {9}, issn = {2076-2607}, doi = {10.3390/microorganisms7090367}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195976}, year = {2019}, abstract = {With the technological advances of the last decade, it is now feasible to analyze microbiome samples, such as human stool specimens, using multi-omic techniques. Given the inherent sample complexity, there exists a need for sample methods which preserve as much information as possible about the biological system at the time of sampling. Here, we analyzed human stool samples preserved and stored using different methods, applying metagenomics as well as metaproteomics. Our results demonstrate that sample preservation and storage have a significant effect on the taxonomic composition of identified proteins. The overall identification rates, as well as the proportion of proteins from Actinobacteria were much higher when samples were flash frozen. Preservation in RNAlater overall led to fewer protein identifications and a considerable increase in the share of Bacteroidetes, as well as Proteobacteria. Additionally, a decrease in the share of metabolism-related proteins and an increase of the relative amount of proteins involved in the processing of genetic information was observed for RNAlater-stored samples. This suggests that great care should be taken in choosing methods for the preservation and storage of microbiome samples, as well as in comparing the results of analyses using different sampling and storage methods. Flash freezing and subsequent storage at -80 °C should be chosen wherever possible.}, language = {en} } @article{GrafMondorfKnopetal.2019, author = {Graf, Christiana and Mondorf, Antonia and Knop, Viola and Peiffer, Kai-Henrik and Dietz, Julia and Friess, Julia and Wedemeyer, Heiner and Buggisch, Peter and Mauss, Stefan and Berg, Thomas and Rausch, Michael and Sprinzl, Martin and Klinker, Hartwig and Hinrichsen, Holger and Bronowicki, Jean-Pierre and Haag, Sebastian and H{\"u}ppe, Dietrich and Lutz, Thomas and Poynard, Thierry and Zeuzem, Stefan and Friedrich-Rust, Mireen and Sarrazin, Christoph and Vermehren, Johannes}, title = {Evaluation of point shear wave elastography using acoustic radiation force impulse imaging for longitudinal fibrosis assessment in patients with HBeAg-Negative HBV infection}, series = {Journal of Clinical Medicine}, volume = {8}, journal = {Journal of Clinical Medicine}, number = {12}, issn = {2077-0383}, doi = {10.3390/jcm8122101}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193916}, year = {2019}, abstract = {Background: Accurate assessment of hepatic fibrosis in patients with chronic HBeAg-negative Hepatitis B is of crucial importance not only to predict the long-term clinical course, but also to evaluate antiviral therapy indication. The aim of this study was to prospectively assess the utility of point shear wave elastography (pSWE) for longitudinal non-invasive fibrosis assessment in a large cohort of untreated patients with chronic HBeAg-negative hepatitis B virus (HBV) infection. Methods: 407 consecutive patients with HBeAg-negative HBV infection who underwent pSWE, transient elastography (TE) as well as laboratory fibrosis markers, including fibrosis index based on four factors (FIB-4), aspartate to platelet ratio index (APRI) and FibroTest, on the same day were prospectively followed up for six years. Patients were classified into one of the three groups: inactive carriers (IC; HBV-DNA <2000 IU/mL and ALT <40 U/L); grey zone group 1 (GZ-1; HBV DNA <2000 IU/mL and ALT >40 U/L); grey zone group 2 (GZ-2; HBV-DNA >2000 IU/mL and ALT <40 U/L). Results: pSWE results were significantly correlated with TE (r = 0.29, p < 0.001) and APRI (r = 0.17; p = 0.005). Median pSWE values did not differ between IC, GZ-1 and GZ-2 patients (p = 0.82, p = 0.17, p = 0.34). During six years of follow-up, median pSWE and TE values did not differ significantly over time (TE: p = 0.27; pSWE: p = 0.05). Conclusion: Our data indicate that pSWE could be useful for non-invasive fibrosis assessment and follow-up in patients with HBeAg-negative chronic HBV infection.}, language = {en} } @article{SierraSanchezGutierrezetal.2019, author = {Sierra, Miguel A. and S{\´a}nchez, David and Gutierrez, Rafael and Cuniberti, Gianaurelio and Dom{\´i}nguez-Adame, Francisco and D{\´i}az, Elena}, title = {Spin-polarized electron transmission in DNA-like systems}, series = {Biomolecules}, volume = {10}, journal = {Biomolecules}, number = {1}, issn = {2218-273X}, doi = {10.3390/biom10010049}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193813}, year = {2019}, abstract = {The helical distribution of the electronic density in chiral molecules, such as DNA and bacteriorhodopsin, has been suggested to induce a spin-orbit coupling interaction that may lead to the so-called chirality-induced spin selectivity (CISS) effect. Key ingredients for the theoretical modelling are, in this context, the helically shaped potential of the molecule and, concomitantly, a Rashba-like spin-orbit coupling due to the appearance of a magnetic field in the electron reference frame. Symmetries of these models clearly play a crucial role in explaining the observed effect, but a thorough analysis has been largely ignored in the literature. In this work, we present a study of these symmetries and how they can be exploited to enhance chiral-induced spin selectivity in helical molecular systems.}, language = {en} } @article{TianeSchepersRombautetal.2019, author = {Tiane, Assia and Schepers, Melissa and Rombaut, Ben and Hupperts, Raymond and Prickaerts, Jos and Hellings, Niels and van den Hove, Daniel and Vanmierlo, Tim}, title = {From OPC to oligodendrocyte: an epigenetic journey}, series = {Cells}, volume = {8}, journal = {Cells}, number = {10}, issn = {2073-4409}, doi = {10.3390/cells8101236}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193267}, year = {2019}, abstract = {Oligodendrocytes provide metabolic and functional support to neuronal cells, rendering them key players in the functioning of the central nervous system. Oligodendrocytes need to be newly formed from a pool of oligodendrocyte precursor cells (OPCs). The differentiation of OPCs into mature and myelinating cells is a multistep process, tightly controlled by spatiotemporal activation and repression of specific growth and transcription factors. While oligodendrocyte turnover is rather slow under physiological conditions, a disruption in this balanced differentiation process, for example in case of a differentiation block, could have devastating consequences during ageing and in pathological conditions, such as multiple sclerosis. Over the recent years, increasing evidence has shown that epigenetic mechanisms, such as DNA methylation, histone modifications, and microRNAs, are major contributors to OPC differentiation. In this review, we discuss how these epigenetic mechanisms orchestrate and influence oligodendrocyte maturation. These insights are a crucial starting point for studies that aim to identify the contribution of epigenetics in demyelinating diseases and may thus provide new therapeutic targets to induce myelin repair in the long run.}, language = {en} } @article{SaddiqueUsmanBernhofer2019, author = {Saddique, Naeem and Usman, Muhammad and Bernhofer, Christian}, title = {Simulating the impact of climate change on the hydrological regimes of a sparsely gauged mountainous basin, northern Pakistan}, series = {Water}, volume = {11}, journal = {Water}, number = {10}, issn = {2073-4441}, doi = {10.3390/w11102141}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193175}, year = {2019}, abstract = {Projected climate changes for the 21st century may cause great uncertainties on the hydrology of a river basin. This study explored the impacts of climate change on the water balance and hydrological regime of the Jhelum River Basin using the Soil and Water Assessment Tool (SWAT). Two downscaling methods (SDSM, Statistical Downscaling Model and LARS-WG, Long Ashton Research Station Weather Generator), three Global Circulation Models (GCMs), and two representative concentration pathways (RCP4.5 and RCP8.5) for three future periods (2030s, 2050s, and 2090s) were used to assess the climate change impacts on flow regimes. The results exhibited that both downscaling methods suggested an increase in annual streamflow over the river basin. There is generally an increasing trend of winter and autumn discharge, whereas it is complicated for summer and spring to conclude if the trend is increasing or decreasing depending on the downscaling methods. Therefore, the uncertainty associated with the downscaling of climate simulation needs to consider, for the best estimate, the impact of climate change, with its uncertainty, on a particular basin. The study also resulted that water yield and evapotranspiration in the eastern part of the basin (sub-basins at high elevation) would be most affected by climate change. The outcomes of this study would be useful for providing guidance in water management and planning for the river basin under climate change.}, language = {en} } @article{SeethalerHertleinWeckleinetal.2019, author = {Seethaler, Marius and Hertlein, Tobias and Wecklein, Bj{\"o}rn and Ymeraj, Alba and Ohlsen, Knut and Lalk, Michael and Hilgeroth, Andreas}, title = {Novel small-molecule antibacterials against Gram-positive pathogens of Staphylococcus and Enterococcus species}, series = {Antibiotics}, volume = {8}, journal = {Antibiotics}, number = {4}, issn = {2079-6382}, doi = {10.3390/antibiotics8040210}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193130}, year = {2019}, abstract = {Defeat of the antibiotic resistance of pathogenic bacteria is one great challenge today and for the future. In the last century many classes of effective antibacterials have been developed, so that upcoming resistances could be met with novel drugs of various compound classes. Meanwhile, there is a certain lack of research of the pharmaceutical companies, and thus there are missing developments of novel antibiotics. Gram-positive bacteria are the most important cause of clinical infections. The number of novel antibacterials in clinical trials is strongly restricted. There is an urgent need to find novel antibacterials. We used synthetic chemistry to build completely novel hybrid molecules of substituted indoles and benzothiophene. In a simple one-pot reaction, two novel types of thienocarbazoles were yielded. Both indole substituted compound classes have been evaluated as completely novel antibacterials against the Staphylococcus and Enterococcus species. The evaluated partly promising activities depend on the indole substituent type. First lead compounds have been evaluated within in vivo studies. They confirmed the in vitro results for the new classes of small-molecule antibacterials.}, language = {en} } @article{ScherthanLeeMausetal.2019, author = {Scherthan, Harry and Lee, Jin-Ho and Maus, Emanuel and Schumann, Sarah and Muhtadi, Razan and Chojowski, Robert and Port, Matthias and Lassmann, Michael and Bestvater, Felix and Hausmann, Michael}, title = {Nanostructure of clustered DNA damage in leukocytes after in-solution irradiation with the alpha emitter Ra-223}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {12}, issn = {2072-6694}, doi = {10.3390/cancers11121877}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193038}, year = {2019}, abstract = {Background: Cancer patients are increasingly treated with alpha-particle-emitting radiopharmaceuticals. At the subcellular level, alpha particles induce densely spaced ionizations and molecular damage. Induction of DNA lesions, especially clustered DNA double-strand breaks (DSBs), threatens a cell's survival. Currently, it is under debate to what extent the spatial topology of the damaged chromatin regions and the repair protein arrangements are contributing. Methods: Super-resolution light microscopy (SMLM) in combination with cluster analysis of single molecule signal-point density regions of DSB repair markers was applied to investigate the nano-structure of DNA damage foci tracks of Ra-223 in-solution irradiated leukocytes. Results: Alpha-damaged chromatin tracks were efficiently outlined by γ-H2AX that formed large (super) foci composed of numerous 60-80 nm-sized nano-foci. Alpha damage tracks contained 60-70\% of all γ-H2AX point signals in a nucleus, while less than 30\% of 53BP1, MRE11 or p-ATM signals were located inside γ-H2AX damage tracks. MRE11 and p-ATM protein fluorescent tags formed focal nano-clusters of about 20 nm peak size. There were, on average, 12 (±9) MRE11 nanoclusters in a typical γ-H2AX-marked alpha track, suggesting a minimal number of MRE11-processed DSBs per track. Our SMLM data suggest regularly arranged nano-structures during DNA repair in the damaged chromatin domain.}, language = {en} } @article{PereiraTrivanovićHerrmann2019, author = {Pereira, A. R. and Trivanović, D. and Herrmann, M.}, title = {Approaches to mimic the complexity of the skeletal mesenchymal stem/stromal cell niche in vitro}, series = {European Cells and Materials}, volume = {37}, journal = {European Cells and Materials}, issn = {1473-2262}, doi = {10.22203/eCM.v037a07}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268823}, pages = {88-112}, year = {2019}, abstract = {Mesenchymal stem/stromal cells (MSCs) are an essential element of most modern tissue engineering and regenerative medicine approaches due to their multipotency and immunoregulatory functions. Despite the prospective value of MSCs for the clinics, the stem cells community is questioning their developmental origin, in vivo localization, identification, and regenerative potential after several years of far-reaching research in the field. Although several major progresses have been made in mimicking the complexity of the MSC niche in vitro, there is need for comprehensive studies of fundamental mechanisms triggered by microenvironmental cues before moving to regenerative medicine cell therapy applications. The present comprehensive review extensively discusses the microenvironmental cues that influence MSC phenotype and function in health and disease - including cellular, chemical and physical interactions. The most recent and relevant illustrative examples of novel bioengineering approaches to mimic biological, chemical, and mechanical microenvironmental signals present in the native MSC niche are summarized, with special emphasis on the forefront techniques to achieve bio-chemical complexity and dynamic cultures. In particular, the skeletal MSC niche and applications focusing on the bone regenerative potential of MSC are addressed. The aim of the review was to recognize the limitations of the current MSC niche in vitro models and to identify potential opportunities to fill the bridge between fundamental science and clinical application of MSCs.}, language = {en} } @article{SaraceniLabopinBrechtetal.2019, author = {Saraceni, Francesco and Labopin, Myriam and Brecht, Arne and Kr{\"o}ger, Nicolaus and Eder, Matthias and Tischer, Johanna and Labussiere-Wallet, Helene and Einsele, Hermann and Beelen, Dietrich and Bunjes, Donald and Niederwieser, Dietger and Bochtler, Tilman and Savani, Bipin N. and Mohty, Mohamad and Nagler, Arnon}, title = {Fludarabine-treosulfan compared to thiotepa-busulfan-fludarabine or FLAMSA as conditioning regimen for patients with primary refractory or relapsed acute myeloid leukemia: a study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT)}, series = {Journal of Hematology \& Oncology}, volume = {12}, journal = {Journal of Hematology \& Oncology}, number = {44}, doi = {10.1186/s13045-019-0727-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227345}, pages = {1-10}, year = {2019}, abstract = {Background Limited data is available to guide the choice of the conditioning regimen for patients with acute myeloid leukemia (AML) undergoing transplant with persistent disease. Methods We retrospectively compared outcome of fludarabine-treosulfan (FT), thiotepa-busulfan-fludarabine (TBF), and sequential fludarabine, intermediate dose Ara-C, amsacrine, total body irradiation/busulfan, cyclophosphamide (FLAMSA) conditioning in patients with refractory or relapsed AML. Results Complete remission rates at day 100 were 92\%, 80\%, and 88\% for FT, TBF, and FLAMSA, respectively (p=0.13). Non-relapse mortality, incidence of relapse, acute (a) and chronic (c) graft-versus-host disease (GVHD) rates did not differ between the three groups. Overall survival at 2years was 37\% for FT, 24\% for TBF, and 34\% for FLAMSA (p=0.10). Independent prognostic factors for survival were Karnofsky performance score and patient CMV serology (p=0.01; p=0.02), while survival was not affected by age at transplant. The use of anti-thymocyte globulin (ATG) was associated with reduced risk of grade III-IV aGVHD (p=0.02) and cGVHD (p=0.006), with no influence on relapse. Conclusions In conclusion, FT, TBF, and FLAMSA regimens provided similar outcome in patients undergoing transplant with active AML. Survival was determined by patient characteristics as Karnofsky performance score and CMV serology, however was not affected by age at transplant. ATG appears able to reduce the incidence of acute and chronic GVHD without influencing relapse risk.}, language = {en} } @article{ZhouWuchterEgereretal.2019, author = {Zhou, Xiang and Wuchter, Patrick and Egerer, Gerlinde and Kriegsmann, Mark and Mataityte, Aiste and Koelsche, Christian and Witzens-Harig, Mathias and Kriegsmann, Katharina}, title = {Role of virological serum markers in patients with both hepatitis B virus infection and diffuse large B-cell lymphoma}, series = {European Journal of Haematology}, volume = {103}, journal = {European Journal of Haematology}, number = {4}, doi = {10.1111/ejh.13300}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258442}, pages = {410-416}, year = {2019}, abstract = {Background Causality between hepatitis B virus (HBV) infection and diffuse large B-cell lymphoma (DLBCL) was reported in various studies. However, the implication of different virological serum markers of HBV infection in patients with both HBV infection and DLBCL is not fully understood. The aim of this study was to investigate the impact of HBV markers on overall survival (OS) and progression-free survival (PFS) in patients with both HBV infection and DLBCL. Methods In this study, patients (n = 40) diagnosed with both HBV infection and DLBCL were identified between 2000 and 2017. Six patients with hepatitis C virus (HCV) and/or human immunodeficiency virus (HIV) co-infection were excluded from this study. We retrospectively analyzed patients' demographic characteristics, treatment, and the prognostic impact of different HBV markers at first diagnosis of DLBCL (HBsAg, anti-HBs, HBeAg, anti-HBe, and HBV-DNA) on OS and PFS. Results The majority of patients (n = 21, 62\%) had advanced disease stage (III/IV) at diagnosis. In the first-line therapy, 24 patients (70\%) were treated with R-CHOP regimen (rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisolone). HBeAg positive patients had a trend toward inferior OS and PFS compared with HBeAg negative patients. Anti-HBe positive patients had a statistically significant better OS and PFS compared with anti-HBe negative group (both P < .0001). Viremia with HBV-DNA ≥ 2 × 107 IU/L had a significant negative impact on OS and PFS (both P < .0001). Conclusion High activity of viral replication is associated with a poor survival outcome of patients with both HBV infection and DLBCL.}, language = {en} } @article{VeyKapsnerFuchsetal.2019, author = {Vey, Johannes and Kapsner, Lorenz A. and Fuchs, Maximilian and Unberath, Philipp and Veronesi, Giulia and Kunz, Meik}, title = {A toolbox for functional analysis and the systematic identification of diagnostic and prognostic gene expression signatures combining meta-analysis and machine learning}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {10}, issn = {2072-6694}, doi = {10.3390/cancers11101606}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193240}, year = {2019}, abstract = {The identification of biomarker signatures is important for cancer diagnosis and prognosis. However, the detection of clinical reliable signatures is influenced by limited data availability, which may restrict statistical power. Moreover, methods for integration of large sample cohorts and signature identification are limited. We present a step-by-step computational protocol for functional gene expression analysis and the identification of diagnostic and prognostic signatures by combining meta-analysis with machine learning and survival analysis. The novelty of the toolbox lies in its all-in-one functionality, generic design, and modularity. It is exemplified for lung cancer, including a comprehensive evaluation using different validation strategies. However, the protocol is not restricted to specific disease types and can therefore be used by a broad community. The accompanying R package vignette runs in ~1 h and describes the workflow in detail for use by researchers with limited bioinformatics training.}, language = {en} } @article{SchmidtHaywardCoelhoetal.2019, author = {Schmidt, Thomas S. B. and Hayward, Matthew R. and Coelho, Luiis P. and Li, Simone S. and Costea, Paul I. and Voigt, Anita Y. and Wirbel, Jakob and Maistrenko, Oleksandr M. and Alves, Renato J. C. and Bergsten, Emma and de Beaufort, Carine and Sobhani, Iradj and Heintz-Buschart, Anna and Sunagawa, Shinichi and Zeller, Georg and Wilmes, Paul and Bork, Peer}, title = {Extensive transmission of microbes along the gastrointestinal tract}, series = {eLife}, volume = {8}, journal = {eLife}, doi = {10.7554/eLife.42693}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228954}, pages = {e42693, 1-18}, year = {2019}, abstract = {The gastrointestinal tract is abundantly colonized by microbes, yet the translocation of oral species to the intestine is considered a rare aberrant event, and a hallmark of disease. By studying salivary and fecal microbial strain populations of 310 species in 470 individuals from five countries, we found that transmission to, and subsequent colonization of, the large intestine by oral microbes is common and extensive among healthy individuals. We found evidence for a vast majority of oral species to be transferable, with increased levels of transmission in colorectal cancer and rheumatoid arthritis patients and, more generally, for species described as opportunistic pathogens. This establishes the oral cavity as an endogenous reservoir for gut microbial strains, and oral-fecal transmission as an important process that shapes the gastrointestinal microbiome in health and disease.}, subject = {Barrier}, language = {en} } @article{GrollBurdickChoetal.2019, author = {Groll, J and Burdick, J A and Cho, D-W and Derby, B and Gelinsky, M and Heilshorn, S C and J{\"u}ngst, T and Malda, J and Mironov, V A and Nakayama, K and Ovsianikov, A and Sun, W and Takeuchi, S and Yoo, J J and Woodfield, T B F}, title = {A definition of bioinks and their distinction from biomaterial inks}, series = {Biofabrication}, volume = {11}, journal = {Biofabrication}, number = {1}, doi = {10.1088/1758-5090/aaec52}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-253993}, year = {2019}, abstract = {Biofabrication aims to fabricate biologically functional products through bioprinting or bioassembly (Groll et al 2016 Biofabrication 8 013001). In biofabrication processes, cells are positioned at defined coordinates in three-dimensional space using automated and computer controlled techniques (Moroni et al 2018 Trends Biotechnol. 36 384-402), usually with the aid of biomaterials that are either (i) directly processed with the cells as suspensions/dispersions, (ii) deposited simultaneously in a separate printing process, or (iii) used as a transient support material. Materials that are suited for biofabrication are often referred to as bioinks and have become an important area of research within the field. In view of this special issue on bioinks, we aim herein to briefly summarize the historic evolution of this term within the field of biofabrication. Furthermore, we propose a simple but general definition of bioinks, and clarify its distinction from biomaterial inks.}, language = {en} } @article{GriesbeckMichailRauchetal.2019, author = {Griesbeck, Stefanie and Michail, Evripidis and Rauch, Florian and Ogasawara, Hiroaki and Wang, Chenguang and Sato, Yoshikatsu and Edkins, Robert M. and Zhang, Zuolun and Taki, Masayasu and Lambert, Christoph and Yamaguchi, Shigehiro and Marder, Todd B.}, title = {The Effect of Branching on the One- and Two-Photon Absorption, Cell Viability, and Localization of Cationic Triarylborane Chromophores with Dipolar versus Octupolar Charge Distributions for Cellular Imaging}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {57}, doi = {10.1002/chem.201902461}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212887}, pages = {13164 -- 13175}, year = {2019}, abstract = {Two different chromophores, namely a dipolar and an octupolar system, were prepared and their linear and nonlinear optical properties as well as their bioimaging capabilities were compared. Both contain triphenylamine as the donor and a triarylborane as the acceptor, the latter modified with cationic trimethylammonio groups to provide solubility in aqueous media. The octupolar system exhibits a much higher two-photon brightness, and also better cell viability and enhanced selectivity for lysosomes compared with the dipolar chromophore. Furthermore, both dyes were applied in two-photon excited fluorescence (TPEF) live-cell imaging.}, language = {en} } @article{LorkowskiKrahfussKubickietal.2019, author = {Lorkowski, Jan and Krahfuß, Mirjam and Kubicki, Maciej and Radius, Udo and Pietraszuk, Cezary}, title = {Intramolecular Ring-Expansion Reaction (RER) and Intermolecular Coordination of In Situ Generated Cyclic (Amino)(aryl)carbenes (cAArCs)}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {48}, doi = {10.1002/chem.201902630}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212496}, pages = {11365 -- 11374}, year = {2019}, abstract = {Cyclic (amino)(aryl)carbenes (cAArCs) based on the isoindoline core were successfully generated in situ by α-elimination of 3-alkoxyisoindolines at high temperatures or by deprotonation of isoindol-2-ium chlorides with sodium or copper(I) acetates at low temperatures. 3-Alkoxy-isoindolines 2 a,b-OR (R=Me, Et, iPr) have been prepared in high yields by the addition of a solution of 2-aryl-1,1-diphenylisoindol-2-ium triflate (1 a,b-OTf; a: aryl=Dipp=2,6-diisopropylphenyl; b: Mesityl-, Mes=2,4,6-trimethylphenyl) to the corresponding alcohol (ROH) with NEt3 at room temperature. Furthermore, the reaction of 2 a,b-OMe in diethyl ether with a tenfold excess of hydrochloric acid led to the isolation of the isoindol-2-ium chlorides 1 a,b-Cl in high yields. The thermally generated cAArC reacts with sulfur to form the thioamide 3 a. Without any additional trapping reagent, in situ generation of 1,1-diphenylisoidolin-3-ylidenes does not lead to the isolation of these compounds, but to the reaction products of the insertion of the carbene carbon atom into an ortho C-H bond of a phenyl substituent, followed by ring-expansion reaction; namely, anthracene derivatives 9-N(H)aryl-10-Ph-C14H8 4 a,b (a: Dipp; b: Mes). These compounds are conveniently synthesized by deprotonation of the isoindol-2-ium chlorides with sodium acetate in high yields. Deprotonation of 1 a-Cl with copper(I) acetate at low temperatures afforded a mixture of 4 a and the corresponding cAArC copper(I) chloride 5 a, and allowed the isolation and structural characterization of the first example of a cAArC copper complex of general formula [(cAArC)CuCl].}, language = {en} } @article{HartmannPluetschowMottoketal.2019, author = {Hartmann, Sylvia and Pl{\"u}tschow, Annette and Mottok, Anja and Bernd, Heinz-Wolfram and Feller, Alfred C. and Ott, German and Cogliatti, Sergio and Fend, Falko and Quintanilla-Martinez, Leticia and Stein, Harald and Klapper, Wolfram and M{\"o}ller, Peter and Rosenwald, Andreas and Engert, Andreas and Hansmann, Martin-Leo and Eichenauer, Dennis A.}, title = {The time to relapse correlates with the histopathological growth pattern in nodular lymphocyte predominant Hodgkin lymphoma}, series = {American Journal of Hematology}, volume = {94}, journal = {American Journal of Hematology}, number = {11}, doi = {10.1002/ajh.25607}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212594}, pages = {1208 -- 1213}, year = {2019}, abstract = {Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) can present with different histopathological growth patterns. The impact of these histopathological growth patterns on relapse characteristics is unknown. We therefore analyzed paired biopsies obtained at initial diagnosis and relapse from 33 NLPHL patients who had received first-line treatment within German Hodgkin Study Group (GHSG) trial protocols, and from a second cohort of 41 relapsed NLPHL patients who had been treated outside GHSG studies. Among the 33 GHSG patients, 21 patients presented with a typical growth pattern at initial diagnosis, whereas 12 patients had a variant histology. The histopathological growth patterns at initial diagnosis and at relapse were consistent in 67\% of cases. A variant histology at initial diagnosis was associated with a shorter median time to lymphoma recurrence (2.8 vs 5.2 years; P = .0219). A similar tendency towards a shorter median time to lymphoma recurrence was observed for patients presenting with a variant histology at relapse, irrespective of the growth pattern at initial diagnosis. Results obtained from the 41 NLPHL patients who had been treated outside GHSG studies were comparable (median time to lymphoma recurrence for variant histology vs typical growth pattern at initial diagnosis: 1.5 vs 7.0 years). In conclusion, the histopathological growth pattern remains consistent at relapse in the majority of NLPHL cases, and has major impact on the time of relapse.}, language = {en} } @article{RaselliHearnWyssetal.2019, author = {Raselli, Tina and Hearn, Tom and Wyss, Annika and Atrott, Kirstin and Peter, Alain and Frey-Wagner, Isabelle and Spalinger, Marianne R. and Maggio, Ewerton M. and Sailer, Andreas W. and Schmitt, Johannes and Schreiner, Philipp and Moncsek, Anja and Mertens, Joachim and Scharl, Michael and Griffiths, William J. and Bueter, Marco and Geier, Andreas and Rogler, Gerhard and Wang, Yuqin and Misselwitz, Benjamin}, title = {Elevated oxysterol levels in human and mouse livers reflect nonalcoholic steatohepatitis}, series = {Journal of Lipid Research}, volume = {60}, journal = {Journal of Lipid Research}, number = {7}, doi = {10.1194/jlr.M093229}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225004}, pages = {1270-1283}, year = {2019}, abstract = {Nonalcoholic steatohepatitis (NASH), a primary cause of liver disease, leads to complications such as fibrosis, cirrhosis, and carcinoma, but the pathophysiology of NASH is incompletely understood. Epstein-Barr virus-induced G protein-coupled receptor 2 (EBI2) and its oxysterol ligand 7 alpha,25-dihydroxycholesterol (7 alpha,25-diHC) are recently discovered immune regulators. Several lines of evidence suggest a role of oxysterols in NASH pathogenesis, but rigorous testing has not been performed. We measured oxysterol levels in the livers of NASH patients by LC-MS and tested the role of the EBI2-7 alpha,25-diHC system in a murine feeding model of NASH. Free oxysterol profiling in livers from NASH patients revealed a pronounced increase in 24- and 7-hydroxylated oxysterols in NASH compared with controls. Levels of 24- and 7-hydroxylated oxysterols correlated with histological NASH activity. Histological analysis of murine liver samples demonstrated ballooning and liver inflammation. No significant genotype-related differences were observed in Ebi2(-/-) mice and mice with defects in the 7 alpha,25-diHC synthesizing enzymes CH25H and CYP7B1 compared with wild-type littermate controls, arguing against an essential role of these genes in NASH pathogenesis. Elevated 24- and 7-hydroxylated oxysterol levels were confirmed in murine NASH liver samples. Our results suggest increased bile acid synthesis in NASH samples, as judged by the enhanced level of 7 alpha-hydroxycholest-4-en-3-one and impaired 24S-hydroxycholesterol metabolism as characteristic biochemical changes in livers affected by NASH.}, language = {en} } @article{BelicPageLazariotouetal.2019, author = {Belic, Stanislav and Page, Lukas and Lazariotou, Maria and Waaga-Gasser, Ana Maria and Dragan, Mariola and Springer, Jan and Loeffler, Juergen and Morton, Charles Oliver and Einsele, Hermann and Ullmann, Andrew J. and Wurster, Sebastian}, title = {Comparative Analysis of Inflammatory Cytokine Release and Alveolar Epithelial Barrier Invasion in a Transwell® Bilayer Model of Mucormycosis}, series = {Frontiers in Microbiology}, volume = {9}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2018.03204}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252477}, year = {2019}, abstract = {Understanding the mechanisms of early invasion and epithelial defense in opportunistic mold infections is crucial for the evaluation of diagnostic biomarkers and novel treatment strategies. Recent studies revealed unique characteristics of the immunopathology of mucormycoses. We therefore adapted an alveolar Transwell® A549/HPAEC bilayer model for the assessment of epithelial barrier integrity and cytokine response to Rhizopus arrhizus, Rhizomucor pusillus, and Cunninghamella bertholletiae. Hyphal penetration of the alveolar barrier was validated by 18S ribosomal DNA detection in the endothelial compartment. Addition of dendritic cells (moDCs) to the alveolar compartment led to reduced fungal invasion and strongly enhanced pro-inflammatory cytokine response, whereas epithelial CCL2 and CCL5 release was reduced. Despite their phenotypic heterogeneity, the studied Mucorales species elicited the release of similar cytokine patterns by epithelial and dendritic cells. There were significantly elevated lactate dehydrogenase concentrations in the alveolar compartment and epithelial barrier permeability for dextran blue of different molecular weights in Mucorales-infected samples compared to Aspergillus fumigatus infection. Addition of monocyte-derived dendritic cells further aggravated LDH release and epithelial barrier permeability, highlighting the influence of the inflammatory response in mucormycosis-associated tissue damage. An important focus of this study was the evaluation of the reproducibility of readout parameters in independent experimental runs. Our results revealed consistently low coefficients of variation for cytokine concentrations and transcriptional levels of cytokine genes and cell integrity markers. As additional means of model validation, we confirmed that our bilayer model captures key principles of Mucorales biology such as accelerated growth in a hyperglycemic or ketoacidotic environment or reduced epithelial barrier invasion upon epithelial growth factor receptor blockade by gefitinib. Our findings indicate that the Transwell® bilayer model provides a reliable and reproducible tool for assessing host response in mucormycosis.}, language = {en} } @article{SauerJuranekMarksetal.2019, author = {Sauer, Markus and Juranek, Stefan A. and Marks, James and De Magis, Alessio and Kazemier, Hinke G and Hilbig, Daniel and Benhalevy, Daniel and Wang, Xiantao and Hafner, Markus and Paeschke, Katrin}, title = {DHX36 prevents the accumulation of translationally inactive mRNAs with G4-structures in untranslated regions}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, number = {2421}, doi = {10.1038/s41467-019-10432-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227486}, pages = {1-15}, year = {2019}, abstract = {Translation efficiency can be affected by mRNA stability and secondary structures, including G-quadruplex structures (G4s). The highly conserved DEAH-box helicase DHX36/RHAU resolves G4s on DNA and RNA in vitro, however a systems-wide analysis of DHX36 targets and function is lacking. We map globally DHX36 binding to RNA in human cell lines and find it preferentially interacting with G-rich and G4-forming sequences on more than 4500 mRNAs. While DHX36 knockout (KO) results in a significant increase in target mRNA abundance, ribosome occupancy and protein output from these targets decrease, suggesting that they were rendered translationally incompetent. Considering that DHX36 targets, harboring G4s, preferentially localize in stress granules, and that DHX36 KO results in increased SG formation and protein kinase R (PKR/EIF2AK2) phosphorylation, we speculate that DHX36 is involved in resolution of rG4 induced cellular stress.}, language = {en} } @article{MayerLoefflerLozaValdesetal.2019, author = {Mayer, Alexander E. and L{\"o}ffler, Mona C. and Loza Vald{\´e}s, Angel E. and Schmitz, Werner and El-Merahbi, Rabih and Trujillo-Viera, Jonathan and Erk, Manuela and Zhang, Thianzhou and Braun, Ursula and Heikenwalder, Mathias and Leitges, Michael and Schulze, Almut and Sumara, Grzegorz}, title = {The kinase PKD3 provides negative feedback on cholesterol and triglyceride synthesis by suppressing insulin signaling}, series = {Science Signaling}, journal = {Science Signaling}, edition = {accepted manuscript}, doi = {10.1126/scisignal.aav9150}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250025}, year = {2019}, abstract = {Hepatic activation of protein kinase C (PKC) isoforms by diacylglycerol (DAG) promotes insulin resistance and contributes to the development of type 2 diabetes (T2D). The closely related protein kinase D (PKD) isoforms act as effectors for DAG and PKC. Here, we showed that PKD3 was the predominant PKD isoform expressed in hepatocytes and was activated by lipid overload. PKD3 suppressed the activity of downstream insulin effectors including the kinase AKT and mechanistic target of rapamycin complex 1 and 2 (mTORC1 and mTORC2). Hepatic deletion of PKD3 in mice improved insulin-induced glucose tolerance. However, increased insulin signaling in the absence of PKD3 promoted lipogenesis mediated by SREBP (sterol regulatory element-binding protein) and consequently increased triglyceride and cholesterol content in the livers of PKD3-deficient mice fed a high-fat diet. Conversely, hepatic-specific overexpression of a constitutively active PKD3 mutant suppressed insulin-induced signaling and caused insulin resistance. Our results indicate that PKD3 provides feedback on hepatic lipid production and suppresses insulin signaling. Therefore, manipulation of PKD3 activity could be used to decrease hepatic lipid content or improve hepatic insulin sensitivity.}, language = {en} }