@article{AdolfiCarreiraJesusetal.2015, author = {Adolfi, Mateus C. and Carreira, Ana C. O. and Jesus, L{\´a}zaro W. O. and Bogerd, Jan and Funes, Rejane M. and Schartl, Manfred and Sogayar, Mari C. and Borella, Maria I.}, title = {Molecular cloning and expression analysis of dmrt1 and sox9 during gonad development and male reproductive cycle in the lambari fish, Astyanax altiparanae}, series = {Reproductive Biology and Endocrinology}, volume = {13}, journal = {Reproductive Biology and Endocrinology}, number = {2}, doi = {10.1186/1477-7827-13-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126486}, year = {2015}, abstract = {Background The dmrt1 and sox9 genes have a well conserved function related to testis formation in vertebrates, and the group of fish presents a great diversity of species and reproductive mechanisms. The lambari fish (Astyanax altiparanae) is an important Neotropical species, where studies on molecular level of sex determination and gonad maturation are scarce. Methods Here, we employed molecular cloning techniques to analyze the cDNA sequences of the dmrt1 and sox9 genes, and describe the expression pattern of those genes during development and the male reproductive cycle by qRT-PCR, and related to histology of the gonad. Results Phylogenetic analyses of predicted amino acid sequences of dmrt1 and sox9 clustered A. altiparanae in the Ostariophysi group, which is consistent with the morphological phylogeny of this species. Studies of the gonad development revealed that ovary formation occurred at 58 days after hatching (dah), 2 weeks earlier than testis formation. Expression studies of sox9 and dmrt1 in different tissues of adult males and females and during development revealed specific expression in the testis, indicating that both genes also have a male-specific role in the adult. During the period of gonad sex differentiation, dmrt1 seems to have a more significant role than sox9. During the male reproductive cycle dmrt1 and sox9 are down-regulated after spermiation, indicating a role of these genes in spermatogenesis. Conclusions For the first time the dmrt1 and sox9 were cloned in a Characiformes species. We show that both genes have a conserved structure and expression, evidencing their role in sex determination, sex differentiation and the male reproductive cycle in A. altiparanae. These findings contribute to a better understanding of the molecular mechanisms of sex determination and differentiation in fish.}, language = {en} } @article{AdamMauelerSchartl1991, author = {Adam, Dieter and Maueler, Winfried and Schartl, Manfred}, title = {Transcriptional activation of the melanoma inducing Xmrk oncogene in Xiphophorus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87584}, year = {1991}, abstract = {The melanoma inducing locus of Xiphophorus encodes a tumorigenic version of a novel putative receptor tyrosine kinase (Xmrk). To elucidate the mechanism of oncogenic activation of Xmrk, we compared the structure and expression of two oncogenic loci with the corresponding proto-oncogene. Only minor structural alterations were found to be specific for the oncogenic Xmrk genes. Marked overexpression of the oncogene transcripts in melanoma, which are approximately 1 kb shorter than the proto-oncogene transcript, correlates with the malignancy of the tumors. The tumor transcripts are derived from an alternative transcription start site that is used only in the oncogenic loci. Thus, oncogenic activation of the melanoma inducing Xmrk gene appears primarily to be due to novel transcriptional control and overexpression.}, subject = {Schwertk{\"a}rpfling}, language = {en} } @article{AdamDimitrijevicSchartl1993, author = {Adam, Dieter and Dimitrijevic, Nicola and Schartl, Manfred}, title = {Tumor suppression in Xiphophorus by an accidentally acquired promoter}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61630}, year = {1993}, abstract = {Melanoma formation in the teleost Xiphophorus is caused by a dominant genetic locus, Tu. This locus includes the Xmrk oncogene, which encodes a receptor tyrosine kinase. Tumor induction is. suppressed in wild-type fish by a tumor suppressor locus, R. Molecular genetic analyses revealed that the Tu locus emerged by nonhomologaus recombination of the Xmrk proto-oncogene with a previously uncharacterized sequence, D. This event generated an additional copy of Xmrk with a new promoter. Suppression of the new Xmrk promoter by R in parental fish and its deregulation in hybrids explain the genetics of melanoma formation in Xiphophorus.}, subject = {Physiologische Chemie}, language = {en} } @article{AdamWittbrodtTellingetal.1988, author = {Adam, D. and Wittbrodt, J. and Telling, A. and Schartl, Manfred}, title = {RFLP for an EGF-receptor related gene associated with the melanoma oncogene locus of Xiphophorus maculatus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61822}, year = {1988}, abstract = {No abstract available}, subject = {Physiologische Chemie}, language = {en} } @incollection{AdamSchartlAndexingeretal.1991, author = {Adam, D. and Schartl, A. and Andexinger, S. and H{\"o}lter, S. and Wilde, B. and Schartl, Manfred}, title = {Genetic factors in tumour formation: The melanoma-inducing gene of Xiphophorus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86388}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1991}, abstract = {No abstract available.}, subject = {Humangenetik}, language = {en} }