@phdthesis{Gupta2021, author = {Gupta, Rohini}, title = {Intracellular self-activation of the TrkB kinase domain causes FAK phosphorylation and disrupts actin filopodia dynamics}, doi = {10.25972/OPUS-23382}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233829}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The tropomysin receptor kinase B (TrkB), the receptor for the neurotrophin brain-derived neurotrophic factor (BDNF), plays an important role in neuronal survival, neuronal differentiation, and cellular plasticity. Conventionally, TrkB activation is induced by binding of BDNF at extracellular sites and subsequent dimerization of receptor monomers. Classical Trk signaling concepts have failed to explain ligand-independent signaling of intracellular TrkB or oncogenic NTRK-fusion proteins. The intracellular activation domain of TrkB consists of a tyrosine kinase core, with three tyrosine (Y) residues at positions 701, 705 and 706, that catalyzes the phosphorylation reaction between ATPγ and tyrosine. The release of cisautoinhibition of the kinase domain activates the kinase domain and tyrosine residues outside of the catalytic domain become phosphorylated. The aim of this study was to find out how ligand-independent activation of TrkB is brought about. With the help of phosphorylation mutants of TrkB, it has been found that a high, local abundance of the receptor is sufficient to activate TrkB in a ligand-independent manner. This self-activation of TrkB was blocked when either the ATP-binding site or Y705 in the core domain was mutated. The vast majority of this self-active TrkB was found at intracellular locations and was preferentially seen in roundish cells, lacking filopodia. Live cell imaging of actin dynamics showed that self-active TrkB changed the cellular morphology by reducing actin filopodia formation. Signaling cascade analysis confirmed that self-active TrkB is a powerful activator of focal adhesion kinase (FAK). This might be the reason why self-active TrkB is able to disrupt actin filopodia formation. The signaling axis from Y705 to FAK could be mimicked by expression of the soluble, cytosolic TrkB kinase domain. However, the signaling pathway was inactive, when the TrkB kinase domain was targeted to the plasmamembrane with the help of artificial myristoylation membrane anchors. A cancer-related intracellular NTRK2-fusion protein (SQSTM1-NTRK2) also underwent constitutive kinase activation. In glioblastoma-like U87MG cells, self-active TrkB kinase reduced cell migration. These constitutive signaling pathways could be fully blocked within minutes by clinically approved, anti-tumorigenic Trk inhibitors. Moreover, this study found evidences for constitutively active, intracellular TrkB in tissue of human grade IV glioblastoma. In conclusion, the data provide an explanation and biological function for selfactive, constitutive TrkB kinase domain signaling, in the absence of a ligand.}, language = {en} } @phdthesis{Sibilski2014, author = {Sibilski, Claudia}, title = {Identification and characterization of the novel mKSR1 phosphorylation site Tyr728 and its role in MAPK signaling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114672}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In mammals, KSR1 functions as an essential scaffold that coordinates the assembly of RAF/MEK/ERK complexes and regulates intracellular signal transduction upon extracellular stimulation. Aberrant activation of the equivalent MAPK signaling pathway has been implicated in multiple human cancers and some developmental disorders. The mechanism of KSR1 regulation is highly complex and involves several phosphorylation/dephosphorylation steps. In the present study, a number of novel in vivo phosphorylation sites were detected in mKSR1 by use of mass spectrometry analysis. Among others, Tyr728 was identified as a unique regulatory residue phosphorylated by LCK, a Src kinase family member. To understand how phosphorylation of Tyr728 may regulate the function of KSR1 in signal transduction and cellular processes, structural modeling and biochemical studies were integrated in this work. Computational modeling of the mKSR1(KD) protein structure revealed strong hydrogen bonding between phospho-Tyr728 and the residues surrounding Arg649. Remarkably, this pattern was altered when Tyr728 was non-phosphorylated or substituted. As confirmed by biochemical analysis, Arg649 may serve as a major anchor point for phospho-Tyr728 in order to stabilize internal structures of KSR1. In line with the protein modeling results, mutational studies revealed that substitution of Tyr728 by phenylalanine leads to a less compact interaction between KSR1 and MEK, a facilitated KSR1/B-RAF binding and an increased phosphorylation of MEK in complex with KSR1. From these findings it can be concluded that phospho-Tyr728 is involved in tightening the KSR1/MEK interaction interface and in regulating the phosphorylation of KSR1-bound MEK by either RAF or KSR1 kinases. Beside the Tyr728, Ser722 was identified as a novel regulatory phosphorylation site. Amino acid exchanges at the relevant position demonstrated that Ser722 regulates KSR1-bound MEK phosphorylation without affecting KSR1/MEK binding per se. Due to its localization, Ser722 might consequently control the catalytic activity of KSR1 by interfering with the access of substrate (possibly MEK) to the active site of KSR1 kinase. Together with Ser722, phosphorylated Tyr728 may further positively affect the kinase activity of KSR1 as a consequence of its vicinity to the activation and catalytic loop in the KSR1(KD). As revealed by structural modeling, phospho-Tyr728 builds a hydrogen bond with the highly conserved Lys685. Consequently, phospho-Tyr728 has a stabilizing effect on internal structures involved in the catalytic reaction and possibly enhances the phosphate transfer within the catalytic cleft in KSR1. Considering these facts, it seems very likely that the LCK-dependent phosphorylation of Tyr728 plays a crucial role in the regulation of KSR1 catalytic activity. Results of fractionation and morphology analyses revealed that KSR1 recruits LCK to cytoskeleton for its phosphorylation at Tyr728 suggesting that this residue may regulate cytoskeleton dynamics and, consequently, cell motility. Beside that, phosphorylation of Tyr728 is involved in the regulation of cell proliferation, as shown by a significantly reduced population doubling time of KSR1-Y728F cells compared to cells expressing wild type KSR1. Taken together, tyrosine phosphorylation in KSR1 uncovers a new link between Src family kinases and MAPK signaling. Tyr728, the novel regulatory phosphorylation site in murine KSR1, may coordinate the transition between the scaffolding and the catalytic function of KSR1 serving as a control point used to fine-tune cellular responses.}, subject = {MAP-Kinase}, language = {en} } @phdthesis{Wenzel2014, author = {Wenzel, Jens}, title = {Regulation of TLR-induced macrophage responses by cytoskeleton-associated phosphoproteins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-98843}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Toll-like receptors (TLR) are pattern recognition receptors (PRR) by which macrophages (M{\O}) sense pathogen-associated molecular patterns (PAMPs). The recognition of lipopolysaccharide (LPS), the PAMP of gram negative bacteria, by TLR4 triggers signaling cascades and leads to the pro-inflammatory activation of the cells. A recent quantitative and kinetic analysis of the phosphoproteome of LPS-activated primary macrophages highlighted the cytoskeleton as a cell compartment with an enriched protein phosphorylation. In total 44 cytoskeleton-associated proteins were regulated by this post-translational modification and thus might be involved in the control and regulation of key macrophage functions like spreading, motility and phagocytosis. To investigate the control of cytoskeleton-associated cell functions by TLR4 activation, we first developed a method to quantitatively measure the spreading response of bone marrow M{\O} after stimulation with LPS. Fluorescence microscopy was used for cell imaging and visualisation of the M{\O} contact area. In collaboration with the Fraunhofer Institute Erlangen, we developed and validated a software tool for the semi-automated segmentation and quantitation of M{\O} fluorescence microscopy data, which allowed fast, robust and objective image analysis. Using this method, we observed that LPS caused time-dependent spreading, which was detectable after 1-2 h and maximal after 24 h. Next, the impact of genetic or pharmacological inhibition of known TLR signaling components was investigated. Deficiency in the adapter protein MYD88 strongly reduced spreading activity at the late time points, but had no impact early after LPS-stimulation. A similar effect was observed upon pharmacological inhibition of ERK1/2 signaling, indicating that ERK1/2 mediates MYD88-dependent M{\O} spreading. In contrast, M{\O} lacking the MAPK p38 were impaired in the initial spreading response but responded normally 8-24 h after stimulation. The genetic deletion of the MAPK phosphatases DUSP1 and DUSP16 resulted in impaired late spreading, corroborating the essential role for functional MAPK signaling in TLR4-driven M{\O} spreading. To identify the contribution of other cytoskeletal phosphoproteins to M{\O} spreading, siRNA knockdown of selected candidate genes in primary murine M{\O} was employed and combined with automated quantitative image analysis. These experiments revealed a functional role for the Myosins MYO1e and MYO1f in M{\O} spreading. These motor proteins are strongly phosphorylated in LPS-activated M{\O}. Because of their ability to simultaneously bind to actin filaments and cell membrane or other proteins, we investigated their role in phagocytosis, cytokine production and antigen presentation. Phagocytosis and killing of bacteria were not affected in Myo1e-/- macrophages. However, MYO1e plays a role in chemokine secretion and antigen presentation processes. MCP1 (CCL2) release was selectively increased in Myo1e-deficient M{\O} and dendritic cells (DC), while cytokine secretion was unaffected. Furthermore, macrophages and DCs lacking MYO1e showed lower levels of MHC-II on the cell surface. However, mRNA levels of CCL2 and of MHC-II were unaltered. These data suggest a role for MYO1e in the transport of selected chemokines and of MHC-II molecules to the cell surface. MHC-II-restricted antigen presentation assays revealed an impaired capacity of macrophages and DC lacking MYO1e to stimulate antigen-specific T cells, suggesting that the reduced MHC-II expression is functionally relevant. Taken together, in this study first a quantitative image analysis method was developed which allows the unbiased, robust and efficient investigation of the macrophage spreading response. Combination of this method with siRNA knockdown of selected cytoskeleton-associated phosphoproteins led to the identification of MYO1e and MYO1f as regulators of macrophage spreading. Furthermore, we identified MYO1e in M{\O} and DC to be essential for the intracellular transport of CCL2 and MHC-II to the cell surface and for optimal stimulation of antigen-specific CD4 T cells.}, subject = {Toll-like-Rezeptoren}, language = {en} } @phdthesis{Mihlan2012, author = {Mihlan, Sabrina [geb. Jasper]}, title = {Identifikation von Zonula Occludens 2 (ZO-2) als neuen LASP-1 Interaktionspartner und Aufkl{\"a}rung der LASP-1/ZO-2 Kern-Zytosol Translokation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73442}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {LASP-1 (LIM und SH3 Dom{\"a}nen Protein) ist ein in Zellen ubiquit{\"a}r vorkommendes Protein, welches in verschiedenen Tumorgeweben eine pathophysiologische {\"U}berexpression aufweist. Das Protein besitzt eine LIM Dom{\"a}ne, zwei Aktinbindungsregionen sowie eine SH3 Dom{\"a}ne und bindet einerseits an dynamischen Aktinstrukturen wie den fokalen Kontakten, Lamellopodien und Membranforts{\"a}tzen, kann andererseits aber auch in den Zellkern translokalisieren. F{\"u}r Aktinstrukturen wirkt LASP-1 als Ger{\"u}stprotein und ist wichtig f{\"u}r die Migration und Proliferation der Zellen. Die Funktion von LASP-1 im Zellkern ist noch nicht bekannt, da aber in Tumorzellen eine erh{\"o}hte nukleare Akkumulation von LASP-1 beobachtet werden konnte, deren Intensit{\"a}t mit der Tumorgr{\"o}ße sowie dem Langzeit{\"u}berleben der Patientinnen korreliert, ist LASP-1, zus{\"a}tzlich zu seiner Funktion als Strukturprotein, vermutlich auch ein Transkriptionsfaktor oder ein transkriptioneller Kofaktor. Eine Herunterregulation von LASP-1 in verschiedenen Tumorentit{\"a}ten f{\"u}hrt zur Inhibition der Proliferation und Migration. In dieser Arbeit konnte der bisher unbekannte Zellkernimport und -export von LASP-1 aufgekl{\"a}rt werden. Maßgeblich daran beteiligt ist ein durch Pulldown Experimente neu identifizierter LASP-1 Bindungspartner: das Zonula Occludens 2 Protein (ZO-2). Mittels Immunpr{\"a}zipitationen und Immunfluoreszenzen wurde diese Interaktion best{\"a}tigt. Nach Phosphorylierung von LASP-1 an Ser-146 durch Aktivierung der cAMP-abh{\"a}ngigen Proteinkinase (PKA) kommt es zu einer partiellen Abl{\"o}sung des LASP-1/ZO-2 Komplexes aus den fokalen Kontakten hin zu einer vermehrten Kernlokalisation beider Proteine. Dies l{\"a}sst sich durch Kern/Zytosol Trennungen belegen. Dabei ist die Bindung von LASP-1 an ZO-2 essentiell f{\"u}r die Translokation in den Zellkern, da bei einem ZO-2 Knockdown auch nach PKA Aktivierung LASP-1 zytosolisch lokalisiert bleibt. Wie Mutationsanalysen zeigen, findet die Interaktion zwischen der C-terminalen SH3 Dom{\"a}ne im LASP-1 und der Prolin-reichen SH3-Bindungssequenz im Bereich der Aminos{\"a}uren 1103-1121 am C-Terminus im ZO-2 statt. Die Translokation des Komplexes in den Kern erfolgt dabei {\"u}ber das Kernlokalisationssignal im ZO-2, da die LASP-1 Sequenz selbst keine nukleare Importsequenz aufweist. Im Zellkern konnte die direkte Interaktion von LASP-1 und ZO-2 mittels Duolink® Proximity Ligation Assay sichtbar gemacht werden. Der Export der Proteine erfolgt {\"u}ber das Protein CRM1. Eine Inhibition der Kernexportmaschinerie mit Leptomycin B erh{\"o}ht die Konzentration beider Proteine im Zellkern. Das nukleare Exportsignal (NES) im LASP-1 konnte durch Punktmutationen N-terminal der Leucin-reichen Aminos{\"a}uresequenz 70-77 zugeordnet werden (NLRLKQQS). Im letzten Schritt dieses Zyklus erfolgt die Relokalisation von LASP-1 zur{\"u}ck an die Zellmembranstrukturen. Der neu gefundene Signalweg dient wahrscheinlich zur Weiterleitung von externen Stimuli in den Kern und zur Genregulation - mit LASP-1 als Transkriptionsfaktor oder transkriptionellen Kofaktor.}, subject = {Tumorzelle}, language = {de} } @phdthesis{Baljuls2009, author = {Baljuls, Angela}, title = {Differences and Similarities in the Regulation of RAF Isoforms: Identification of Novel A-RAF Phosphorylation Sites}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36135}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {In mammals, the RAF family of serine/threonine kinases consists of three members, A-, B- and C-RAF. Activation of RAF kinases involves a complex series of phosphorylations. Although the most prominent phosphorylation sites of B- and C-RAF are well characterized, little is known about regulatory phosphorylation of A-RAF. Using mass spectrometry, we identified here a number of novel in vivo phosphorylation sites in A-RAF. The physiological role and the function of these sites were investigated subsequently by amino acid exchange at the relevant positions. In particular, we found that S432 participates in MEK binding and is indispensable for A-RAF signaling. On the other hand, phosphorylation within the activation segment does not contribute to epidermal growth factor-mediated activation. Regarding regulation of A-RAF activity by 14-3-3 proteins, we show that A-RAF activity is regulated differentially by its C-terminal and internal 14-3-3 binding domain. Furthermore, by use of SPR technique, we found that 14-3-3 proteins associate with RAF in an isoform-specific manner. Of importance, we identified a novel regulatory domain in A-RAF (referred to as IH-segment) positioned between amino acids 248 and 267, which contains seven putative phosphorylation sites. Three of these sites, serines 257, 262 and 264, regulate A-RAF activation in a stimulatory manner. The spatial model of the A-RAF fragment including residues between S246 and E277 revealed a "switch of charge" at the molecular surface of the IH-region upon phosphorylation, suggesting a mechanism in which the high accumulation of negative charges may lead to an electrostatic destabilization of protein/membrane interaction resulting in depletion of A-RAF from the plasma membrane. Activation of B- and C-RAF is regulated by phosphorylation at conserved residues within the negative-charge regulatory region (N-region). Identification of phosphopeptides covering the sequence of the N-region led to the conclusion that, similar to B- and C-RAF, kinase activity of A-RAF is regulated by phosphorylation of the N-region. Abrogation of A-RAF activity by S299A substitution and elevated activity of the A-RAF-Y301D-Y302D mutant confirmed this conclusion. In addition, we studied the role of the non-conserved residues within the N-region in the activation process of RAF kinases. The non-conserved amino acids in positions -3 and +1 relative to the highly conserved S299 in A-RAF and S338 in C-RAF have so far not been considered as regulatory residues. Here, we demonstrate that Y296R substitution in A-RAF led to a constitutively active kinase. In contrast, G300S substitution (mimicking B- and C-RAF) acts in an inhibitory manner. These data were confirmed by analogous mutations in C-RAF. Based on the three-dimensional structure of the catalytic domain of B-RAF, a tight interaction between the N-region residue S339 and the catalytic domain residue R398 was identified in C-RAF and proposed to inhibit the kinase activity of RAF proteins. Furthermore, Y296 in A-RAF favors a spatial orientation of the N-region segment, which enables a tighter contact to the catalytic domain, whereas a glutamine residue at this position in C-RAF abrogates this interaction. Considering this observation, we suggest that Y296, which is unique for A-RAF, is a major determinant of the low activating potency of this RAF isoform. Finally, the residues R359 in A-RAF and R398 in C-RAF, which interact with the N-region, are also involved in binding of phosphatidic acid. Substitution of this conserved arginine by alanine resulted in accumulation of hyper-phosphorylated form of RAF, suggesting that this residue play a crucial role in phosphorylation-mediated feedback regulation of A- and C-RAF. Collectively, we provide here for the first time a detailed analysis of in vivo A-RAF phosphorylation status and demonstrate that regulation of A-RAF by phosphorylation exhibits unique features compared with B- and C-RAF.}, subject = {Raf }, language = {en} } @phdthesis{Brockmann2005, author = {Brockmann, J{\"o}rg}, title = {Regulation G-Protein-gekoppelter Rezeptorkinasen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15320}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {GRK2 wird an Serin29 durch PKC phosphoryliert. Die Phosphorylierung verhindert die Inhibition der GRK2 durch Calmodulin. Die Inhibition der GRK2 durch Calmodulin wird durch den N-Terminus der GRK2 vermittelt und ist auf eine gest{\"o}rte Aktivierbarkeit der GRK2 durch G-Protein beta/gamma-Untereinheiten zur{\"u}ckzuf{\"u}hren.}, subject = {Rezeptor-Kinasen}, language = {de} } @phdthesis{Wulf2001, author = {Wulf, Andrea}, title = {Regulierung eines kalziumempfindlichen Kaliumkanals durch Proteinkinase C}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1179144}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Ca2+-empfindliche K+-Kan{\"a}le mittlerer Leitf{\"a}higkeit (IK1-Kan{\"a}le) {\"u}bernehmen wichtige Funktionen bei vielen physiologischen Prozessen wie z.B. bei der Zell-Proliferation, der epithelialen Salz- und Wasser-Sekretion und der Zellmigration. Die Kan{\"a}le werden durch die intrazelul{\"a}re Ca2+-Konzentration reguliert, wobei ihre Ca2+-Sensitivit{\"a}t durch Phosphorylierungsreaktionen moduliert werden kann. Ziel dieser Arbeit war die funktionelle Charakterisierung des aus transformierten Nierenepithelzellen (MDCK-F-Zellen) klonierten Ca2+-sensitiven K+-Kanals mittlerer Leitf{\"a}higkeit (cIK1) und die Untersuchung seiner Regulierung durch die Proteinkinase C (PKC). Dazu wurde der Kanal heterolog in CHO- und HEK293-Zellen exprimiert. Seine biophysikalischen und pharmakologischen Eigenschaften sowie der Einfluß der Proteinkinase C auf die Kanalaktivit{\"a}t wurden mit Hilfe der Patch-Clamp-Technik untersucht. Die cIK1-Str{\"o}me sind schwach einw{\"a}rtsrektifizierend, zeigen keine Aktivierungs- oder Inaktivierungskinetik und weisen im physiologischen Bereich keine Spannungsabh{\"a}ngigkeit auf. Der cIK1 ist K+-selektiv und wird durch einen Anstieg der intrazellul{\"a}ren Ca2+-Konzentration aktiviert. Der Kanal wird durch Barium, Charybdotoxin und Clotrimazol blockiert und durch 1-Ethyl-2-Benzimidazolon aktiviert. Die funktionellen und pharmakologischen Eigenschaften des klonierten cIK1 entsprechen damit denen des nativen Kanals aus MDCK-F-Zellen und stimmen mit denen anderer Mitglieder der IK1-Kanalfamilie {\"u}berein. Neben der Regulierung durch die intrazellul{\"a}re Ca2+-Konzentration wird der cIK1 auch durch eine PKC-abh{\"a}ngige Phosphorylierung reguliert. Sowohl ATP als auch ATP?S stimulieren die Kanalaktivit{\"a}t. Die ATP-abh{\"a}ngige Aktivierung wird durch Inhibitoren der Proteinkinase C (Bisindolylmaleimid, Calphostin C) gehemmt, w{\"a}hrend die mit ATP?S induzierte Kanalaktivit{\"a}t weitgehend resistent gegen diese PKC-Inhibitoren ist. Eine Stimulierung der Proteinkinase C mit Phorbol 12-Myristat 13-Acetat (PMA) f{\"u}hrt zu einer sofortigen Aktivierung des cIK1. Im Gegensatz dazu sind die cIK1-Kan{\"a}le nach fast vollst{\"a}ndigem Abbau der Proteinkinase C durch eine langfristige Inkubierung der Zellen mit PMA nicht mehr aktiv. Um zu untersuchen, ob diese Regulierung eine direkte Interaktion der Proteinkinase C mit dem Kanalprotein erfordert, wurden die drei putativen PKC-Konsensussequenzen des cIK1 mittels zielgerichteter Mutagenese so ver{\"a}ndert, daß eine Phosphorylierung an diesen Stellen nicht mehr m{\"o}glich ist. Weder die einzelne Mutation der PKC-Konsensussequenzen (T101, S178, T329) noch die gleichzeitige Mutation aller drei Phosporylierungsstellen zu Alanin beeinflußt die akute Regulierung des cIK1 durch die Proteinkinase C. Die cIK1-Mutante T329A und die Dreifachmutante reagieren jedoch nach einem Abbau der Proteinkinase C mit einem extremen Anstieg der Kanalaktivit{\"a}t und demaskieren damit einen zweiten Weg der Kanalregulierung. Die Ergebnisse zeigen, daß der cIK1 durch zwei voneinander unabh{\"a}ngige Mechanismen reguliert wird. Eine PKC-abh{\"a}ngige Phosphorylierung erh{\"o}ht die Aktivit{\"a}t der Kan{\"a}le, findet jedoch nicht an den bekannten PKC-Konsensusesquenzen des Kanalproteins statt. Dagegen werden die cIK1-Kan{\"a}le {\"u}ber einen zweiten ATP-abh{\"a}ngigen Mechanismus, der wahrschenlich eine direkte Interaktion mit dem Kanalprotein erfordert, gehemmt.}, subject = {Kaliumkanal}, language = {de} }