@article{NandaSchoriesSimeonovetal.2022, author = {Nanda, Indrajit and Schories, Susanne and Simeonov, Ivan and Adolfi, Mateus Contar and Du, Kang and Steinlein, Claus and Alsheimer, Manfred and Haaf, Thomas and Schartl, Manfred}, title = {Evolution of the degenerated Y-chromosome of the swamp guppy, Micropoecilia picta}, series = {Cells}, volume = {11}, journal = {Cells}, number = {7}, issn = {2073-4409}, doi = {10.3390/cells11071118}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267242}, year = {2022}, abstract = {The conspicuous colour sexual dimorphism of guppies has made them paradigmatic study objects for sex-linked traits and sex chromosome evolution. Both the X- and Y-chromosomes of the common guppy (Poecilia reticulata) are genetically active and homomorphic, with a large homologous part and a small sex specific region. This feature is considered to emulate the initial stage of sex chromosome evolution. A similar situation has been documented in the related Endler's and Oropuche guppies (P. wingei, P. obscura) indicating a common origin of the Y in this group. A recent molecular study in the swamp guppy (Micropoecilia. picta) reported a low SNP density on the Y, indicating Y-chromosome deterioration. We performed a series of cytological studies on M. picta to show that the Y-chromosome is quite small compared to the X and has accumulated a high content of heterochromatin. Furthermore, the Y-chromosome stands out in displaying CpG clusters around the centromeric region. These cytological findings evidently illustrate that the Y-chromosome in M. picta is indeed highly degenerated. Immunostaining for SYCP3 and MLH1 in pachytene meiocytes revealed that a substantial part of the Y remains associated with the X. A specific MLH1 hotspot site was persistently marked at the distal end of the associated XY structure. These results unveil a landmark of a recombining pseudoautosomal region on the otherwise strongly degenerated Y chromosome of M. picta. Hormone treatments of females revealed that, unexpectedly, no sexually antagonistic color gene is Y-linked in M. picta. All these differences to the Poecilia group of guppies indicate that the trajectories associated with the evolution of sex chromosomes are not in parallel.}, language = {en} } @article{ElHajjDittrichBoecketal.2016, author = {El Hajj, Nady and Dittrich, Marcus and B{\"o}ck, Julia and Kraus, Theo F. J. and Nanda, Indrajit and M{\"u}ller, Tobias and Seidmann, Larissa and Tralau, Tim and Galetzka, Danuta and Schneider, Eberhard and Haaf, Thomas}, title = {Epigenetic dysregulation in the developing Down syndrome cortex}, series = {Epigenetics}, volume = {11}, journal = {Epigenetics}, number = {8}, doi = {10.1080/15592294.2016.1192736}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191239}, pages = {563-578}, year = {2016}, abstract = {Using Illumina 450K arrays, 1.85\% of all analyzed CpG sites were significantly hypermethylated and 0.31\% hypomethylated in fetal Down syndrome (DS) cortex throughout the genome. The methylation changes on chromosome 21 appeared to be balanced between hypo- and hyper-methylation, whereas, consistent with prior reports, all other chromosomes showed 3-11times more hyper- than hypo-methylated sites. Reduced NRSF/REST expression due to upregulation of DYRK1A (on chromosome 21q22.13) and methylation of REST binding sites during early developmental stages may contribute to this genome-wide excess of hypermethylated sites. Upregulation of DNMT3L (on chromosome 21q22.4) could lead to de novo methylation in neuroprogenitors, which then persists in the fetal DS brain where DNMT3A and DNMT3B become downregulated. The vast majority of differentially methylated promoters and genes was hypermethylated in DS and located outside chromosome 21, including the protocadherin gamma (PCDHG) cluster on chromosome 5q31, which is crucial for neural circuit formation in the developing brain. Bisulfite pyrosequencing and targeted RNA sequencing showed that several genes of PCDHG subfamilies A and B are hypermethylated and transcriptionally downregulated in fetal DS cortex. Decreased PCDHG expression is expected to reduce dendrite arborization and growth in cortical neurons. Since constitutive hypermethylation of PCDHG and other genes affects multiple tissues, including blood, it may provide useful biomarkers for DS brain development and pharmacologic targets for therapeutic interventions.}, language = {en} } @article{DollVonaSchnappetal.2020, author = {Doll, Julia and Vona, Barbara and Schnapp, Linda and R{\"u}schendorf, Franz and Khan, Imran and Khan, Saadullah and Muhammad, Noor and Alam Khan, Sher and Nawaz, Hamed and Khan, Ajmal and Ahmad, Naseer and Kolb, Susanne M. and K{\"u}hlewein, Laura and Labonne, Jonathan D. J. and Layman, Lawrence C. and Hofrichter, Michaela A. H. and R{\"o}der, Tabea and Dittrich, Marcus and M{\"u}ller, Tobias and Graves, Tyler D. and Kong, Il-Keun and Nanda, Indrajit and Kim, Hyung-Goo and Haaf, Thomas}, title = {Genetic Spectrum of Syndromic and Non-Syndromic Hearing Loss in Pakistani Families}, series = {Genes}, volume = {11}, journal = {Genes}, number = {11}, issn = {2073-4425}, doi = {10.3390/genes11111329}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219293}, year = {2020}, abstract = {The current molecular genetic diagnostic rates for hereditary hearing loss (HL) vary considerably according to the population background. Pakistan and other countries with high rates of consanguineous marriages have served as a unique resource for studying rare and novel forms of recessive HL. A combined exome sequencing, bioinformatics analysis, and gene mapping approach for 21 consanguineous Pakistani families revealed 13 pathogenic or likely pathogenic variants in the genes GJB2, MYO7A, FGF3, CDC14A, SLITRK6, CDH23, and MYO15A, with an overall resolve rate of 61.9\%. GJB2 and MYO7A were the most frequently involved genes in this cohort. All the identified variants were either homozygous or compound heterozygous, with two of them not previously described in the literature (15.4\%). Overall, seven missense variants (53.8\%), three nonsense variants (23.1\%), two frameshift variants (15.4\%), and one splice-site variant (7.7\%) were observed. Syndromic HL was identified in five (23.8\%) of the 21 families studied. This study reflects the extreme genetic heterogeneity observed in HL and expands the spectrum of variants in deafness-associated genes.}, language = {en} } @article{SchneiderDittrichBoecketal.2016, author = {Schneider, Eberhard and Dittrich, Marcus and B{\"o}ck, Julia and Nanda, Indrajit and M{\"u}ller, Tobias and Seidmann, Larissa and Tralau, Tim and Galetzka, Danuta and El Hajj, Nady and Haaf, Thomas}, title = {CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development}, series = {Gene}, volume = {592}, journal = {Gene}, number = {1}, doi = {10.1016/j.gene.2016.07.058}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186936}, pages = {110-118}, year = {2016}, abstract = {Normal human brain development is dependent on highly dynamic epigenetic processes for spatial and temporal gene regulation. Recent work identified wide-spread changes in DNA methylation during fetal brain development. We profiled CpG methylation in frontal cortex of 27 fetuses from gestational weeks 12-42, using Illumina 450K methylation arrays. Sites showing genome-wide significant correlation with gestational age were compared to a publicly available data set from gestational weeks 3-26. Altogether, we identified 2016 matching developmentally regulated differentially methylated positions (m-dDMPs): 1767 m-dDMPs were hypermethylated and 1149 hypomethylated during fetal development. M-dDMPs are underrepresented in CpG islands and gene promoters, and enriched in gene bodies. They appear to cluster in certain chromosome regions. M-dDMPs are significantly enriched in autism-associated genes and CpGs. Our results promote the idea that reduced methylation dynamics during fetal brain development may predispose to autism. In addition, m-dDMPs are enriched in genes with human-specific brain expression patterns and/or histone modifications. Collectively, we defined a subset of dDMPs exhibiting constant methylation changes from early to late pregnancy. The same epigenetic mechanisms involving methylation changes in cis-regulatory regions may have been adopted for human brain evolution and ontogeny.}, language = {en} } @article{MaierhoferFlunkertOshimaetal.2019, author = {Maierhofer, Anna and Flunkert, Julia and Oshima, Junko and Martin, George M. and Poot, Martin and Nanda, Indrajit and Dittrich, Marcus and M{\"u}ller, Tobias and Haaf, Thomas}, title = {Epigenetic signatures of Werner syndrome occur early in life and are distinct from normal epigenetic aging processes}, series = {Aging Cell}, volume = {18}, journal = {Aging Cell}, doi = {10.1111/acel.12995}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202733}, pages = {e12995}, year = {2019}, abstract = {Werner Syndrome (WS) is an adult-onset segmental progeroid syndrome. Bisulfite pyrosequencing of repetitive DNA families revealed comparable blood DNA methylation levels between classical (18 WRN-mutant) or atypical WS (3 LMNA-mutant and 3 POLD1-mutant) patients and age- and sex-matched controls. WS was not associated with either age-related accelerated global losses of ALU, LINE1, and α-satellite DNA methylations or gains of rDNA methylation. Single CpG methylation was analyzed with Infinium MethylationEPIC arrays. In a correspondence analysis, atypical WS samples clustered together with the controls and were clearly separated from classical WS, consistent with distinct epigenetic pathologies. In classical WS, we identified 659 differentially methylated regions (DMRs) comprising 3,656 CpG sites and 613 RefSeq genes. The top DMR was located in the HOXA4 promoter. Additional DMR genes included LMNA, POLD1, and 132 genes which have been reported to be differentially expressed in WRN-mutant/depleted cells. DMRs were enriched in genes with molecular functions linked to transcription factor activity and sequence-specific DNA binding to promoters transcribed by RNA polymerase II. We propose that transcriptional misregulation of downstream genes by the absence of WRN protein contributes to the variable premature aging phenotypes of WS. There were no CpG sites showing significant differences in DNA methylation changes with age between WS patients and controls. Genes with both WS- and age-related methylation changes exhibited a constant offset of methylation between WRN-mutant patients and controls across the entire analyzed age range. WS-specific epigenetic signatures occur early in life and do not simply reflect an acceleration of normal epigenetic aging processes.}, language = {en} } @article{MaierhoferFlunkertDittrichetal.2017, author = {Maierhofer, Anna and Flunkert, Julia and Dittrich, Marcus and M{\"u}ller, Tobias and Schindler, Detlev and Nanda, Indrajit and Haaf, Thomas}, title = {Analysis of global DNA methylation changes in primary human fibroblasts in the early phase following X-ray irradiation}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0177442}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170895}, pages = {e0177442}, year = {2017}, abstract = {Epigenetic alterations may contribute to the generation of cancer cells in a multi-step process of tumorigenesis following irradiation of normal body cells. Primary human fibroblasts with intact cell cycle checkpoints were used as a model to test whether X-ray irradiation with 2 and 4 Gray induces direct epigenetic effects (within the first cell cycle) in the exposed cells. ELISA-based fluorometric assays were consistent with slightly reduced global DNA methylation and hydroxymethylation, however the observed between-group differences were usually not significant. Similarly, bisulfite pyrosequencing of interspersed LINE-1 repeats and centromeric α-satellite DNA did not detect significant methylation differences between irradiated and non-irradiated cultures. Methylation of interspersed ALU repeats appeared to be slightly increased (one percentage point; p = 0.01) at 6 h after irradiation with 4 Gy. Single-cell analysis showed comparable variations in repeat methylation among individual cells in both irradiated and control cultures. Radiation-induced changes in global repeat methylation, if any, were much smaller than methylation variation between different fibroblast strains. Interestingly, α-satellite DNA methylation positively correlated with gestational age. Finally, 450K methylation arrays mainly targeting genes and CpG islands were used for global DNA methylation analysis. There were no detectable methylation differences in genic (promoter, 5' UTR, first exon, gene body, 3' UTR) and intergenic regions between irradiated and control fibroblast cultures. Although we cannot exclude minor effects, i.e. on individual CpG sites, collectively our data suggest that global DNA methylation remains rather stable in irradiated normal body cells in the early phase of DNA damage response.}, language = {en} } @article{HaertleElHajjDittrichetal.2017, author = {Haertle, Larissa and El Hajj, Nady and Dittrich, Marcus and M{\"u}ller, Tobias and Nanda, Indrajit and Lehnen, Harald and Haaf, Thomas}, title = {Epigenetic signatures of gestational diabetes mellitus on cord blood methylation}, series = {Clinical Epigenetics}, volume = {9}, journal = {Clinical Epigenetics}, number = {28}, doi = {10.1186/s13148-017-0329-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159459}, year = {2017}, abstract = {Background: Intrauterine exposure to gestational diabetes mellitus (GDM) confers a lifelong increased risk for metabolic and other complex disorders to the offspring. GDM-induced epigenetic modifications modulating gene regulation and persisting into later life are generally assumed to mediate these elevated disease susceptibilities. To identify candidate genes for fetal programming, we compared genome-wide methylation patterns of fetal cord bloods (FCBs) from GDM and control pregnancies. Methods and results: Using Illumina's 450K methylation arrays and following correction for multiple testing, 65 CpG sites (52 associated with genes) displayed significant methylation differences between GDM and control samples. Four candidate genes, ATP5A1, MFAP4, PRKCH, and SLC17A4, from our methylation screen and one, HIF3A, from the literature were validated by bisulfite pyrosequencing. The effects remained significant after adjustment for the confounding factors maternal BMI, gestational week, and fetal sex in a multivariate regression model. In general, GDM effects on FCB methylation were more pronounced in women with insulin-dependent GDM who had a more severe metabolic phenotype than women with dietetically treated GDM. Conclusions: Our study supports an association between maternal GDM and the epigenetic status of the exposed offspring. Consistent with a multifactorial disease model, the observed FCB methylation changes are of small effect size but affect multiple genes/loci. The identified genes are primary candidates for transmitting GDM effects to the next generation. They also may provide useful biomarkers for the diagnosis, prognosis, and treatment of adverse prenatal exposures.}, language = {en} } @article{SchartlNandaSchluppetal.1990, author = {Schartl, Manfred and Nanda, Indrajit and Schlupp, Ingo and Parzefall, Jakob and Schmid, Michael and Epplen, J{\"o}rg T.}, title = {Genetic variation in the clonal vertebrate Poecilia formosa is limited to few truly hypervariable loci}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86359}, year = {1990}, abstract = {No abstract available.}, subject = {Amazon Molly}, language = {en} } @article{SchartlErbeldingDenkNandaetal.1991, author = {Schartl, Manfred and Erbelding-Denk, Claudia and Nanda, Indrajit and Schmid, Michael and Schr{\"o}der, Johannes Horst and Epplen, J{\"o}rg T.}, title = {Mating success of subordinate males in a poeciliid fish species, Limia perugiae}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86349}, year = {1991}, abstract = {No abstract available.}, subject = {Lebendgeb{\"a}rende Zahnkarpfen}, language = {en} } @article{SchartlSchluppSchartletal.1991, author = {Schartl, Manfred and Schlupp, Ingo and Schartl, Angelika and Meyer, Manfred K. and Nanda, Indrajit and Schmid, Michael and Epplen, J{\"o}rg T. and Parzefall, Jakob}, title = {On the stability of dispensable constituents of the eukaryotic genome: Stability of coding sequences versus truly hypervariable sequences in a clonal vertebrate, the amazon molly, Poecilia formosa}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61731}, year = {1991}, abstract = {In dooal unisexual vertebrales, the genes specifying the males become dispensable. To study tbe rate of such geoes the gynogeoetic all-female fisb Poecilillfonnolll was treated with androgens. Phenotypic males were obtained that exbibited the complete set of male cbaracteristics of dosely related gooocboristic species, induding body proportions, pigmentation, the extremely complex insemination apparatus of poecil{\"u}d fish, sexual bebavior, and spermatogeoesls. Tbe apparent stabllity of such genic structures, induding those involved in androgen regulation, is contrasted by high instability of noncoding sequeaces. Frequent mutations, thelr donal transmission, and at least two truly hypervariable Iod leading to individual difl'ereaces between these othenrise donal organisms were detected by DNA fingerprinting. These observations substantiate the concept that also in "ameiotic" vertebrates certain compartments of the genome are more prooe to mutatiooal alterations than others.}, subject = {Physiologische Chemie}, language = {en} } @article{NandaSchartlFeichtingeretal.1992, author = {Nanda, Indrajit and Schartl, Manfred and Feichtinger, Wolfgang and Epplen, J{\"o}rg T. and Schmid, Michael}, title = {Early stages of sex chromosome differentiation in fish as analysed by simple repetitive DNA sequences}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61715}, year = {1992}, abstract = {Animal sex chromosome evolution has started on different occasions with a homologous pair of autosomes leading to morphologically differentiated gonosomes. In contrast to other vertebrate classes, among fishes cytologically dernonstrahle sex chromosomes are rare. In reptiles, certain motifs of simple tandemly repeated DNA sequences like (gata)\(_n\)/(gaca)\(_m\) are associated with the constitutive heterochromatin of sex chromosomes. In this study a panel of simple repetitive sequence probes was hybridized to restriction enzyme digested genomic DNA of poeciliid fishes. Apparent male heterogamety previously established by genetic experiments in Poecilia reticulata (guppy) was correlated with male-specific hybridization using the (GACA)\(_4\) probe. The (GATA)\(_4\) oligonucleotide identifies certain male guppies by a Y chromosomal polymorphism in the outbred population. In cantrast none of the genetically defined heterogametic situations in Xiphophorus could be verified consistently using the collection of simple repetitive sequence probes. Only individuals from particular populations produced sex-specific patterns of hybridization with (GATA)\(_4\). Additional poeciliid species (P. sphenops, P. velifera) harbour different sex-specifically organized simple repeat motifs. The observed sex-specific hybridization patterns were substantiated by banding analyses of the karyotypes and by in situ hybridization using the (GACA)\(_4\) probe.}, subject = {Physiologische Chemie}, language = {en} } @article{SchluppParzefallEpplenetal.1992, author = {Schlupp, Ingo and Parzefall, Jakob and Epplen, J{\"o}rg T. and Nanda, Indrajit and Schmid, Michael and Schartl, Manfred}, title = {Pseudomale behaviour and spontaneous masculinization in the all-female teleost Poecilia formosa (Teleostei: Poeciliidae)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61688}, year = {1992}, abstract = {Pseudosexual behaviour is a rare phenomenon associated with unisexuality in vertebrates. In the gynogenetic, all-female teleost Poecilia formosa, rare individuals occur that resemble males of closely related gonochoristic species both in behaviour and external morphology. These masculinized gynogens and normal gynogens are members of the same clone, as demonstrated by DNA-fingerprinting. The behaviour of these masculinized gynogens is described and compared to the behaviour of the gonochoristic species Poecilia mexicana, P. latipinna and their hybrid as weil as androgen-treated individuals of P. formosa. No statistically significant difTerences were found between masculinized gynogens and hormonetreated individuals nor between the gonochoristic P. mexicana and P. latipinna males. Differences exist between gonochoristic and unisexual species. Passihle causes and effects of masculinized gynogens are discussed.}, subject = {Physiologische Chemie}, language = {en} } @article{NandaSchartlEpplenetal.1993, author = {Nanda, Indrajit and Schartl, Manfred and Epplen, J{\"o}rg T. and Feichtinger, Wolfgang and Schmid, Michael}, title = {Primitive sex chromosomes in poeciliid fishes harbor simple repetitive DNA sequences}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61659}, year = {1993}, abstract = {The demonstration ofthe chromosomal mode ofsex determinationvia genetic experiments as well as the absence of heteromorphic sex chromosomes affirm poeciliid fishes as a unique group among vertebrates that are endowed with the mostprimitive form of sex chromosornes. In many different taxa the evolutionary process involved in the differentiation ofadvanced sex chromosomes is outlined through sex specifically organized repetitive sequences. In this investigation hydridization of synthetic probes specific to genomic simple repeat motifs uncovers a sex-specific hybridization pattern in certain viviparaus fishes ofthe family Poeciliidae. The hybridization pattern together with specific staining ofthe constitutive heterochromatin by C-banding reveals heterogamety in males (Poecilia reticulata) as weil as in females (P. sphenops). In P. velifera, however, C-banding alone fails to unravel the heterogametic status. The female specific W-chromosome can be detected by simple repetitive sequence probes. Therefore, the principal significance of heterochromatization as a means of generating differentiated sex chromosomes is evident.}, subject = {Physiologische Chemie}, language = {en} } @article{SchartlErbeldingDenkHolteretal.1993, author = {Schartl, Manfred and Erbelding-Denk, Claudia and Holter, Sabine and Nanda, Indrajit and Schmid, Michael and Schroder, Johannes H. and Epplen, J{\"o}rg T.}, title = {Reproductive failure of dominant males in the poeciliid fish Limia perugiae determined by DNA fingerprinting}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61643}, year = {1993}, abstract = {Hierarchical structures among male indlviduals in a population are frequently reflected ln differences in aggressive and reproductive behavior and access to the females. In general, sodal dominance requires the Investments, which in turn then may have to be compensated for by high reproductive success. However, this hypothesls has so far only been sufficiently tested in small mating groups (one or two males with one or two females) due to the difficulties of determining paternity by conventional methods. DNA fingerprinting overcomes these problems by offering the possibility to determine genetic relationships and mating patterns within larger groups [Borke, T. (1989) Trends Ecol. Evol. 4, 139-144]. We show here that in the poecUiid fish Limia perugitu, in small matlng groups the dominant male has 8 mating success of 100\%, whereas ln larger groups lts contribution to the offspring unexpectedly drops to zero.}, subject = {Physiologische Chemie}, language = {en} } @article{ErbeldingDenkSchroderSchartletal.1994, author = {Erbelding-Denk, Claudia and Schroder, Johannes H. and Schartl, Manfred and Nanda, Indrajit and Schmid, Michael and Epplen, J{\"o}rg T.}, title = {Male polymorphism in Limia perugiae (Pisces: Poeciliidae)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61573}, year = {1994}, abstract = {The male-polymorphic poeciliid fish, Limia perugiae, a small teleostean endemic to the southeast of the Caribbean island Hispafiola, consists of three male size morphs with uniform females. Large males differentiate at a size va:rying between 25 and 38 mm; intermediate males, between 21 and 25 mm. Under competition, !arge males exhibit an elaborate courtship display, whereas small males show only a sneak-chase behavior. Intermediate males adapt their tactics to the respective competitors. However, all malemorphs can switch from courtship display to sneak-chase behavior. In large mating groups with four males of different size and five or six virgin females, large dominant a-males as weil as small subordinate \(\delta\)-males did not produce any offspring. Unexpectedly, all progeny were sired exclusively by the intemediate subordinate ß- and \(\gamma\)-males. Breeding experiments with the three male morphs can best be explained by a model of Y -linked genes for small and !arge size which are both suspended by the activity of an autosomal recessive repressor responsible for the development of intermediate males. The dominant allele of the recessive repressor, in either its homoorits heterozygous state, activates the Y-chromosomal genes for !arge or small size, respectively. Accordingly, intermediate males may produce male offspring of all size classes, depending on the presence of either the Y-linked gene or the autosomal repressor.}, subject = {Physiologische Chemie}, language = {en} }