@article{vonBohlKuehnSimonetal.2015, author = {von Bohl, Andreas and Kuehn, Andrea and Simon, Nina and Nkwouano Ngongang, Vanesa and Spehr, Marc and Baumeister, Stefan and Przyborski, Jude M. and Fischer, Rainer and Pradel, Gabriele}, title = {A WD40-repeat protein unique to malaria parasites associates with adhesion protein complexes and is crucial for blood stage progeny}, series = {Malaria Journal}, volume = {14}, journal = {Malaria Journal}, number = {435}, doi = {10.1186/s12936-015-0967-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139728}, year = {2015}, abstract = {Background During development in human erythrocytes, Plasmodium falciparum parasites display a remarkable number of adhesive proteins on their plasma membrane. In the invasive merozoites, these include members of the PfMSP1 and PfAMA1/RON complexes, which facilitate contact between merozoites and red blood cells. In gametocytes, sexual precursor cells mediating parasite transmission to the mosquito vector, plasma membrane-associated proteins primarily belong to the PfCCp and 6-cys families with roles in fertilization. This study describes a newly identified WD40-repeat protein unique to Plasmodium species that associates with adhesion protein complexes of both merozoites and gametocytes. Methods The WD40-repeat protein-like protein PfWLP1 was identified via co-immunoprecipitation assays followed by mass spectrometry and characterized using biochemical and immunohistochemistry methods. Reverse genetics were employed for functional analysis. Results PfWLP1 is expressed both in schizonts and gametocytes. In mature schizonts, the protein localizes underneath the merozoite micronemes and interacts with PfAMA1, while in gametocytes PfWLP1 primarily accumulates underneath the plasma membrane and associates with PfCCp1 and Pfs230. Reverse genetics failed to disrupt the pfwlp1 gene, while haemagglutinin-tagging was feasible, suggesting a crucial function for PfWLP1 during blood stage replication. Conclusions This is the first report on a plasmodial WD40-repeat protein associating with cell adhesion proteins. Since WD40 domains are known to mediate protein-protein contact by serving as a rigid scaffold for protein interactions, the presented data suggest that PfWLP1 supports the stability of adhesion protein complexes of the plasmodial blood stages.}, language = {en} } @article{MakoahNigelArndtPradel2012, author = {Makoah Nigel, Animake and Arndt, Hans-Dieter and Pradel, Gabriele}, title = {The proteasome of malaria parasites: A multi-stage drug target for chemotherapeutic intervention?}, series = {International Journal for Parasitology: Drugs and Drug Resistance}, volume = {2}, journal = {International Journal for Parasitology: Drugs and Drug Resistance}, doi = {10.1016/j.ijpddr.2011.12.001}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137777}, pages = {1-10}, year = {2012}, abstract = {The ubiquitin/proteasome system serves as a regulated protein degradation pathway in eukaryotes, and is involved in many cellular processes featuring high protein turnover rates, such as cell cycle control, stress response and signal transduction. In malaria parasites, protein quality control is potentially important because of the high replication rate and the rapid transformations of the parasite during life cycle progression. The proteasome is the core of the degradation pathway, and is a major proteolytic complex responsible for the degradation and recycling of non-functional ubiquitinated proteins. Annotation of the genome for Plasmodium falciparum, the causative agent of malaria tropica, revealed proteins with similarity to human 26S proteasome subunits. In addition, a bacterial ClpQ/hslV threonine peptidase-like protein was identified. In recent years several independent studies indicated an essential function of the parasite proteasome for the liver, blood and transmission stages. In this review, we compile evidence for protein recycling in Plasmodium parasites and discuss the role of the 26S proteasome as a prospective multi-stage target for antimalarial drug discovery programs.}, language = {en} }