@article{WieserReichertsJuravleetal.2016, author = {Wieser, Matthias J. and Reicherts, Philipp and Juravle, Georgiana and von Leupoldt, Andreas}, title = {Attention mechanisms during predictable and unpredictable threat - a steady-state visual evoked potential approach}, series = {NeuroImage}, volume = {139}, journal = {NeuroImage}, doi = {10.1016/j.neuroimage.2016.06.026}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187365}, pages = {167-175}, year = {2016}, abstract = {Fear is elicited by imminent threat and leads to phasic fear responses with selective attention, whereas anxiety is characterized by a sustained state of heightened vigilance due to uncertain danger. In the present study, we investigated attention mechanisms in fear and anxiety by adapting the NPU-threat test to measure steady-state visual evoked potentials (ssVEPs). We investigated ssVEPs across no aversive events (N), predictable aversive events (P), and unpredictable aversive events (U), signaled by four-object arrays (30 s). In addition, central cues were presented during all conditions but predictably signaled imminent threat only during the P condition. Importantly, cues and context events were flickered at different frequencies (15 Hz vs. 20 Hz) in order to disentangle respective electrocortical responses. The onset of the context elicited larger electrocortical responses for U compared to P context. Conversely, P cues elicited larger electrocortical responses compared to N cues. Interestingly, during the presence of the P cue, visuocortical processing of the concurrent context was also enhanced. The results support the notion of enhanced initial hypervigilance to unpredictable compared to predictable threat contexts, while predictable cues show electrocortical enhancement of the cues themselves but additionally a boost of context processing.}, language = {en} } @article{BiehlEhlisMuelleretal.2013, author = {Biehl, Stefanie C. and Ehlis, Ann-Christine and M{\"u}ller, Laura D. and Niklaus, Andrea and Pauli, Paul and Herrmann, Martin J.}, title = {The impact of task relevance and degree of distraction on stimulus processing}, series = {BMC Neuroscience}, journal = {BMC Neuroscience}, doi = {10.1186/1471-2202-14-107}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97271}, year = {2013}, abstract = {Background The impact of task relevance on event-related potential amplitudes of early visual processing was previously demonstrated. Study designs, however, differ greatly, not allowing simultaneous investigation of how both degree of distraction and task relevance influence processing variations. In our study, we combined different features of previous tasks. We used a modified 1-back task in which task relevant and task irrelevant stimuli were alternately presented. The task irrelevant stimuli could be from the same or from a different category as the task relevant stimuli, thereby producing high and low distracting task irrelevant stimuli. In addition, the paradigm comprised a passive viewing condition. Thus, our paradigm enabled us to compare the processing of task relevant stimuli, task irrelevant stimuli with differing degrees of distraction, and passively viewed stimuli. EEG data from twenty participants was collected and mean P100 and N170 amplitudes were analyzed. Furthermore, a potential connection of stimulus processing and symptoms of attention deficit hyperactivity disorder (ADHD) was investigated. Results Our results show a modulation of peak N170 amplitudes by task relevance. N170 amplitudes to task relevant stimuli were significantly higher than to high distracting task irrelevant or passively viewed stimuli. In addition, amplitudes to low distracting task irrelevant stimuli were significantly higher than to high distracting stimuli. N170 amplitudes to passively viewed stimuli were not significantly different from either kind of task irrelevant stimuli. Participants with more symptoms of hyperactivity and impulsivity showed decreased N170 amplitudes across all task conditions. On a behavioral level, lower N170 enhancement efficiency was significantly correlated with false alarm responses. Conclusions Our results point to a processing enhancement of task relevant stimuli. Unlike P100 amplitudes, N170 amplitudes were strongly influenced by enhancement and enhancement efficiency seemed to have direct behavioral consequences. These findings have potential implications for models of clinical disorders affecting selective attention, especially ADHD.}, language = {en} }