@phdthesis{Krieglmeyer2007, author = {Krieglmeyer, Regina}, title = {How to Overcome Frustration? The Influence of Frustration on Motivational Orientation and Motivational Intensity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27841}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Frustration has been investigated since the early beginnings of psychological research. Yet, it is still unclear how frustration influences the two main parameters of motivation, i.e., orientation (approach-avoidance) and intensity. Some theories propose that controllable frustration increases approach motivation, thereby maintaining motivational intensity. In contrast, other theories propose that the perception of obstacles immediately elicits an avoidance orientation because of the negative valence of the perceptual input. Yet, the latter theories can not explain how motivational intensity is maintained upon encountering obstacles. The aim of the present thesis is to integrate previous contradicting assumptions by describing the influence of frustration on motivational orientation and motivational intensity on the basis of a two-system model of behavior. The definition of frustration as an unexpected obstacle blocking the attainment of an anticipated gratification implies that the obstacle is immediately perceived, whereas the goal is only represented in working memory. According to two-system models, these two types of representations influence different levels of behavior regulation. Whereas spontaneous approach-avoidance tendencies are mainly determined by the valence of the perceptual input, decisions to engage effort to reach the goal are based on knowledge about goals and appraisals of controllability of obstacles. Supporting this theorizing, six experiments demonstrated that frustration immediately activates avoidance tendencies. This was true for frustration of approach goals as well as for frustration of avoidance goals. Furthermore, this effect did not depend on the type of frustration feedback, and was found when approach-avoidance tendencies were measured after completion of goal pursuit as well as while overcoming frustration. In addition, approaching obstacles impaired performance in a subsequent task, suggesting that approaching obstacles consumed cognitive resources. This further supports the assumption that obstacles immediately activate avoidance tendencies. Furthermore, dispositional action-state orientation, which has been previously shown to moderate automatic affective reactions, influenced approach-avoidance tendencies, indicating that affect mediates the impact of frustration on behavioral tendencies. Finally, manipulations of controllability of frustration did not influence spontaneous approach-avoidance tendencies, but measures of motivational intensity such as decisions to engage more effort as well as activation of goal-relevant behavioral schemata. In sum, these findings support the assumptions that immediately elicited motivational orientations are mainly a function of the valence of perceptual input, whereas behavior to reach the goal (i.e. motivational intensity) is regulated by working memory representations such as appraisals of goal expectancy. Motivational orientations may serve to prepare organisms for quick reactions to sudden, unexpected occurrences, whereas behavior regulation based on goal appraisals may provide stability and flexibility in long-term goal pursuit.}, subject = {Sozialpsychologie}, language = {en} } @phdthesis{Goetz2019, author = {G{\"o}tz, Felix Johannes}, title = {Social Cueing of Numerical Magnitude : Observed Head Orientation Influences Number Processing}, doi = {10.25972/OPUS-18716}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187161}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In many parts of the modern world, numbers are used as tools to describe spatial relationships, be it heights, latitudes, or distances. However, this connection goes deeper as a myriad of studies showed that number representations are rooted in space (vertical, horizontal, and/or radial). For instance, numbers were shown to affect spatial perception and, conversely, perceptions or movements in space were shown to affect number estimations. This bidirectional link has already found didactic application in the classroom when children are taught the meaning of numbers. However, our knowledge about the cognitive (and neuropsychological) processes underlying the numerical magnitude operations is still very limited. Several authors indicated that the processing within peripersonal space (i.e. the space surrounding the body in reaching distance) and numerical magnitude operations are functionally equivalent. This assumption has several implications that the present work aims at describing. For instance, vision and visuospatial attention orienting play a prominent role for processing within peripersonal space. Indeed, both neuropsychological and behavioral studies also suggested a similar role of vision and visuospatial attention orienting for number processing. Moreover, social cognition research showed that movements, posture and gestures affect not only the representation of one's own peripersonal space, but also the visuospatial attention behavior of an observer. Against this background, the current work tests the specific implication of the functional equivalence assumption that the spatial attention response to an observed person's posture should extend to the observer's numerical magnitude operations. The empirical part of the present work tests the spatial attention response of observers to vertical head postures (with continuing eye contact to the observer) in both perceptual and numerical space. Two experimental series are presented that follow both steps from the observation of another person's vertical head orientation (within his/her peripersonal space) to the observer's attention orienting response (Experimental series A) as well as from there to the observer's magnitude operations with numbers (Experimental Series B). Results show that the observation of a movement from a neutral to a vertical head orientation (Experiment 1) as well as the observation of the vertical head orientation alone (Experiment 3) shifted the observer's spatial attention in correspondence with the direction information of the observed head (up vs. down). Movement from a vertical to a neutral end position, however, had no effect on the observer's spatial attention orienting response (Experiment 2). Furthermore, following down-tilted head posture (relative to up- or non-tilted head orientation), observers generated smaller numbers in a random number generation task (range 1- 9, Experiment 4), gave smaller estimates to numerical trivia questions (mostly multi-digit numbers, Experiment 5) and chose response keys less frequently in a free choice task that was associated with larger numerical magnitude in a intermixed numerical magnitude task. Experimental Series A served as groundwork for Experimental Series B, as it demonstrated that observing another person's head orientation indeed triggered the expected directional attention orienting response in the observer. Based on this preliminary work, the results of Experimental Series B lend support to the assumption that numerical magnitude operations are grounded in visuospatial processing of peripersonal space. Thus, the present studies brought together numerical and social cognition as well as peripersonal space research. Moreover, the Empirical Part of the present work provides the basis for elaborating on the role of processing within peripersonal space in terms of Walsh's (2003, 2013) Theory of Magnitude. In this context, a specification of the Theory of Magnitude was staked out in a processing model that stresses the pivotal role of spatial attention orienting. Implications for mental magnitude operations are discussed. Possible applications in the classroom and beyond are described.}, subject = {Soziale Wahrnehmung}, language = {en} }