@article{BrychHaendelRiechelmannetal.2021, author = {Brych, Mareike and H{\"a}ndel, Barbara F. and Riechelmann, Eva and Pieczykolan, Aleksandra and Huestegge, Lynn}, title = {Effects of vocal demands on pupil dilation}, series = {Psychophysiology}, volume = {58}, journal = {Psychophysiology}, number = {2}, doi = {10.1111/psyp.13729}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224425}, year = {2021}, abstract = {Pupil dilation is known to be affected by a variety of factors, including physical (e.g., light) and cognitive sources of influence (e.g., mental load due to working memory demands, stimulus/response competition etc.). In the present experiment, we tested the extent to which vocal demands (speaking) can affect pupil dilation. Based on corresponding preliminary evidence found in a reanalysis of an existing data set from our lab, we setup a new experiment that systematically investigated vocal response-related effects compared to mere jaw/lip movement and button press responses. Conditions changed on a trial-by-trial basis while participants were instructed to keep fixating a central cross on a screen throughout. In line with our prediction (and previous observation), speaking caused the pupils to dilate strongest, followed by nonvocal movements and finally a baseline condition without any vocal or muscular demands. An additional analysis of blink rates showed no difference in blink frequency between vocal and baseline conditions, but different blink dynamics. Finally, simultaneously recorded electromyographic activity showed that muscle activity may contribute to some (but not all) aspects of the observed effects on pupil size. The results are discussed in the context of other recent research indicating effects of perceived (instead of executed) vocal action on pupil dynamics.}, language = {en} } @phdthesis{Brych2022, author = {Brych, Mareike Kimberly}, title = {How movements and cognition interact: An investigation of spontaneous blinks}, doi = {10.25972/OPUS-26737}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267376}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {During natural behavior, cognitive processes constantly coincide with body movements such as head or eye movements or blinks. However, during experimental investigations of cognitive processes, movements are often highly restricted which is rather unnatural. In order to improve our understanding of natural behavior, this thesis investigates the interaction between cognition and movements by focusing on spontaneous blinks, which naturally interact with other body movements. Spontaneous blinks are inevitably connected to vision as they shut out incoming visual information. Both sensory-based and cognitive factors, for example, stimulus occurrence and evaluation, were reported to influence blink behavior. Our first study investigated if such influences are comparable for visual and non-visual input. The chosen experimental design allowed dissociating sensory-driven and cognitive influences, which then could be compared between the visual and auditory domain. Our results show that blinks are more strongly modulated during passive observation of visual input compared to auditory input. This modulation is however enhanced for both input modalities by an increased attentional demand. In addition, the cognitively defined meaning of a stimulus changes blink latency independent of the sensory domain. Overall, our findings show that spontaneous blinks and cognitive processes are linked beyond vision. Moreover, the underlying cognitive processes that influence blinks are largely the same across different sensory input indicating that blinks are profoundly integrated into our system. When investigating natural behavior, it is important to consider that movements rarely occur in isolation, but are executed side by side. As these movements interact and have a link to cognitive processes, the complexity of our system increases. In order to take this complexity into account, the second part of the experimental research focused on movement interactions, more specifically on the interactions between blinks, pupil size and speaking. Our results reveal that speech-related motor activity increases blink rate and pupil size as well as modulates blink timing. This is in line with previous research that described a relation between different body and eye movements. Importantly, each bodily-induced change in eye movements affects visual information intake. Therefore, different movements can be tightly linked to perceptual processes through complex interactions. Altogether, the work of this thesis provides rich evidence that movements and cognitive processes are deeply intertwined. Therefore, movements should be seen as an integral part of our system. Taking the relevance of movements and their interactions into account during experimental investigations is necessary in order to reveal a more realistic and complete picture of human natural behavior.}, subject = {Kognition}, language = {en} }