@phdthesis{Wirsing2023, author = {Wirsing, Sara}, title = {Computational Spectroscopic Studies with Focus on Organic Semiconductor Systems}, doi = {10.25972/OPUS-28655}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286552}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This work presents excited state investigations on several systems with respect to experimental spectroscopic work. The majority of projects covers the temporal evolution of excitations in thin films of organic semiconductor materials. In the first chapters, thinfilm and interface systems are build from diindeno[1,2,3-cd:1',2',3'-lm]perylene (DIP) and N,N'-bis-(2-ethylhexyl)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDIR-CN2) layers, in the third chapter bulk systems consist of 4,4',4"-tris[(3-methylphenyl)phenylamino] triphenylamine (m-MTDATA), 4,7-diphenyl-1,10-phenanthroline (BPhen) and tris-(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane (3TPYMB). These were investigated by aggregate-based calculations. Careful selection of methods and incorporation of geometrical relaxation and environmental effects allows for a precise energetical assignment of excitations. The biggest issue was a proper description of charge-transfer excitations, which was resolved by the application of ionization potential tuning on aggregates. Subsequent characterization of excitations and their interplay condenses the picture. Therefore, we could assign important features of the experimental spectroscopic data and explain differences between systems. The last chapter in this work covers the analysis of single molecule spectroscopy on methylbismut. This poses different challenges for computations, such as multi-reference character of low-lying excitations and an intrinsic need for a relativistic description. We resolved this by combining complete active space self-consistent field based methods with scalarrelativistic density-functional theory. Thus we were able to confidently assign the spectroscopic features and explain underlying processes.}, subject = {Theoretische Chemie}, language = {en} }