@article{DomschkeZwanzgerRehbeinetal.2016, author = {Domschke, Katharina and Zwanzger, Peter and Rehbein, Maimu A. and Steinberg, Christian and Knoke, Kathrin and Dobel, Christian and Klinkenberg, Isabelle and Kugel, Harald and Kersting, Anette and Arolt, Volker and Pantev, Christo and Junghofer, Markus}, title = {Magnetoencephalographic Correlates of Emotional Processing in Major Depression Before and After Pharmacological Treatment}, series = {International Journal of Neuropsychopharmacology}, volume = {2016}, journal = {International Journal of Neuropsychopharmacology}, doi = {10.1093/ijnp/pyv093}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165523}, pages = {1-9}, year = {2016}, abstract = {Background: In major depressive disorder (MDD), electrophysiological and imaging studies suggest reduced neural activity in the parietal and dorsolateral prefrontal cortex regions. In the present study, neural correlates of emotional processing in MDD were analyzed for the first time in a pre-/post-treatment design by means of magnetoencephalography (MEG), allowing for detecting temporal dynamics of brain activation. Methods: Twenty-five medication-free Caucasian in-patients with MDD and 25 matched controls underwent a baseline MEG session with passive viewing of pleasant, unpleasant, and neutral pictures. Fifteen patients were followed-up with a second MEG session after 4 weeks of antidepressant monopharmacotherapy with mirtazapine. The corresponding controls received no intervention between the measurements. The clinical course of depression was assessed using the Hamilton Depression scale. Results: Prior to treatment, an overall neocortical hypoactivation during emotional processing, particularly at the parietal regions and areas at the right temporoparietal junction, as well as abnormal valence-specific reactions at the right parietal and bilateral dorsolateral prefrontal cortex (dlPFC) regions were observed in patients compared to controls. These effects occurred <150ms, suggesting dysfunctional processing of emotional stimuli at a preconscious level. Successful antidepressant treatment resulted in a normalization of the hypoactivation at the right parietal and right temporoparietal regions. Accordingly, both dlPFC regions revealed an increase of activity after therapy. Conclusions: The present study provides neurophysiological evidence for dysfunctional emotional processing in a fronto-parieto-temporal network, possibly contributing to the pathogenesis of MDD. These activation patterns might have the potential to serve as biomarkers of treatment success.}, language = {en} } @article{DomschkeZwanzgerRehbeinetal.2016, author = {Domschke, Katharina and Zwanzger, Peter and Rehbein, Maimu A and Steinberg, Christian and Knoke, Kathrin and Dobel, Christian and Klinkenberg, Isabelle and Kugel, Harald and Kersting, Anette and Arolt, Volker and Pantev, Christo and Junghofer, Markus}, title = {Magnetoencephalographic correlates of emotional processing in major depression before and after pharmacological treatment}, series = {International Journal of Neuropsychopharmacology}, volume = {19}, journal = {International Journal of Neuropsychopharmacology}, number = {2}, doi = {10.1093/ijnp/pyv093}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149873}, pages = {pyv093}, year = {2016}, abstract = {Background: In major depressive disorder (MDD), electrophysiological and imaging studies suggest reduced neural activity in the parietal and dorsolateral prefrontal cortex regions. In the present study, neural correlates of emotional processing in MDD were analyzed for the first time in a pre-/post-treatment design by means of magnetoencephalography (MEG), allowing for detecting temporal dynamics of brain activation. Methods: Twenty-five medication-free Caucasian in-patients with MDD and 25 matched controls underwent a baseline MEG session with passive viewing of pleasant, unpleasant, and neutral pictures. Fifteen patients were followed-up with a second MEG session after 4 weeks of antidepressant monopharmacotherapy with mirtazapine. The corresponding controls received no intervention between the measurements. The clinical course of depression was assessed using the Hamilton Depression scale. Results: Prior to treatment, an overall neocortical hypoactivation during emotional processing, particularly at the parietal regions and areas at the right temporoparietal junction, as well as abnormal valence-specific reactions at the right parietal and bilateral dorsolateral prefrontal cortex (dlPFC) regions were observed in patients compared to controls. These effects occurred <150ms, suggesting dysfunctional processing of emotional stimuli at a preconscious level. Successful antidepressant treatment resulted in a normalization of the hypoactivation at the right parietal and right temporoparietal regions. Accordingly, both dlPFC regions revealed an increase of activity after therapy. Conclusions: The present study provides neurophysiological evidence for dysfunctional emotional processing in a fronto-parieto-temporal network, possibly contributing to the pathogenesis of MDD. These activation patterns might have the potential to serve as biomarkers of treatment success.}, language = {en} } @article{PrelogHilligardtSchmidtetal.2016, author = {Prelog, Martina and Hilligardt, Deborah and Schmidt, Christian A. and Przybylski, Grzegorz K. and Leierer, Johannes and Almanzar, Giovanni and El Hajj, Nady and Lesch, Klaus-Peter and Arolt, Volker and Zwanzger, Peter and Haaf, Thomas and Domschke, Katharina}, title = {Hypermethylation of FOXP3 Promoter and Premature Aging of the Immune System in Female Patients with Panic Disorder?}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0157930}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179684}, year = {2016}, abstract = {Immunological abnormalities associated with pathological conditions, such as higher infection rates, inflammatory diseases, cancer or cardiovascular events are common in patients with panic disorder. In the present study, T cell receptor excision circles (TRECs), Forkhead-Box-Protein P3 gene (FOXP3) methylation of regulatory T cells (Tregs) and relative telomere lengths (RTLs) were investigated in a total and subsamples of 131 patients with panic disorder as compared to 131 age- and sex-matched healthy controls in order to test for a potential dysfunction and premature aging of the immune system in anxiety disorders. Significantly lower TRECs (p = 0.004) as well as significant hypermethylation of the FOXP3 promoter region (p = 0.005) were observed in female (but not in male) patients with panic disorder as compared to healthy controls. No difference in relative telomere length was discerned between patients and controls, but significantly shorter telomeres in females, smokers and older persons within the patient group. The presently observed reduced TRECs in panic disorder patients and FOXP3 hypermethylation in female patients with panic disorder potentially reflect impaired thymus and immunosuppressive Treg function, which might partly account for the known increased morbidity and mortality of anxiety disorders conferred by e.g. cancer and cardiovascular disorders.}, language = {en} } @article{KuhnScharfenortSchuemannetal.2016, author = {Kuhn, Manuel and Scharfenort, Robert and Sch{\"u}mann, Dirk and Schiele, Miriam A. and M{\"u}nsterk{\"o}tter, Anna L. and Deckert, J{\"u}rgen and Domschke, Katharina and Haaker, Jan and Kalisch, Raffael and Pauli, Paul and Reif, Andreas and Romanos, Marcel and Zwanzger, Peter and Lonsdorf, Tina B.}, title = {Mismatch or allostatic load? Timing of life adversity differentially shapes gray matter volume and anxious temperament}, series = {Social Cognitive and Affective Neuroscience}, volume = {11}, journal = {Social Cognitive and Affective Neuroscience}, number = {4}, doi = {10.1093/scan/nsv137}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189645}, pages = {537-547}, year = {2016}, abstract = {Traditionally, adversity was defined as the accumulation of environmental events (allostatic load). Recently however, a mismatch between the early and the later (adult) environment (mismatch) has been hypothesized to be critical for disease development, a hypothesis that has not yet been tested explicitly in humans. We explored the impact of timing of life adversity (childhood and past year) on anxiety and depression levels (N = 833) and brain morphology (N = 129). Both remote (childhood) and proximal (recent) adversities were differentially mirrored in morphometric changes in areas critically involved in emotional processing (i.e. amygdala/hippocampus, dorsal anterior cingulate cortex, respectively). The effect of adversity on affect acted in an additive way with no evidence for interactions (mismatch). Structural equation modeling demonstrated a direct effect of adversity on morphometric estimates and anxiety/depression without evidence of brain morphology functioning as a mediator. Our results highlight that adversity manifests as pronounced changes in brain morphometric and affective temperament even though these seem to represent distinct mechanistic pathways. A major goal of future studies should be to define critical time periods for the impact of adversity and strategies for intervening to prevent or reverse the effects of adverse childhood life experiences.}, language = {en} }