@phdthesis{Borchert2020, author = {Borchert, Kathrin Johanna}, title = {Estimating Quality of Experience of Enterprise Applications - A Crowdsourcing-based Approach}, issn = {1432-8801}, doi = {10.25972/OPUS-21697}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216978}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Nowadays, employees have to work with applications, technical services, and systems every day for hours. Hence, performance degradation of such systems might be perceived negatively by the employees, increase frustration, and might also have a negative effect on their productivity. The assessment of the application's performance in order to provide a smooth operation of the application is part of the application management. Within this process it is not sufficient to assess the system performance solely on technical performance parameters, e.g., response or loading times. These values have to be set into relation to the perceived performance quality on the user's side - the quality of experience (QoE). This dissertation focuses on the monitoring and estimation of the QoE of enterprise applications. As building models to estimate the QoE requires quality ratings from the users as ground truth, one part of this work addresses methods to collect such ratings. Besides the evaluation of approaches to improve the quality of results of tasks and studies completed on crowdsourcing platforms, a general concept for monitoring and estimating QoE in enterprise environments is presented. Here, relevant design dimension of subjective studies are identified and their impact of the QoE is evaluated and discussed. By considering the findings, a methodology for collecting quality ratings from employees during their regular work is developed. The method is realized by implementing a tool to conduct short surveys and deployed in a cooperating company. As a foundation for learning QoE estimation models, this work investigates the relationship between user-provided ratings and technical performance parameters. This analysis is based on a data set collected in a user study in a cooperating company during a time span of 1.5 years. Finally, two QoE estimation models are introduced and their performance is evaluated.}, subject = {Quality of Experience}, language = {en} } @phdthesis{Hirth2016, author = {Hirth, Matthias Johannes Wilhem}, title = {Modeling Crowdsourcing Platforms - A Use-Case Driven Approach}, issn = {1432-8801}, doi = {10.25972/OPUS-14072}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140726}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Computer systems have replaced human work-force in many parts of everyday life, but there still exists a large number of tasks that cannot be automated, yet. This also includes tasks, which we consider to be rather simple like the categorization of image content or subjective ratings. Traditionally, these tasks have been completed by designated employees or outsourced to specialized companies. However, recently the crowdsourcing paradigm is more and more applied to complete such human-labor intensive tasks. Crowdsourcing aims at leveraging the huge number of Internet users all around the globe, which form a potentially highly available, low-cost, and easy accessible work-force. To enable the distribution of work on a global scale, new web-based services emerged, so called crowdsourcing platforms, that act as mediator between employers posting tasks and workers completing tasks. However, the crowdsourcing approach, especially the large anonymous worker crowd, results in two types of challenges. On the one hand, there are technical challenges like the dimensioning of crowdsourcing platform infrastructure or the interconnection of crowdsourcing platforms and machine clouds to build hybrid services. On the other hand, there are conceptual challenges like identifying reliable workers or migrating traditional off-line work to the crowdsourcing environment. To tackle these challenges, this monograph analyzes and models current crowdsourcing systems to optimize crowdsourcing workflows and the underlying infrastructure. First, a categorization of crowdsourcing tasks and platforms is developed to derive generalizable properties. Based on this categorization and an exemplary analysis of a commercial crowdsourcing platform, models for different aspects of crowdsourcing platforms and crowdsourcing mechanisms are developed. A special focus is put on quality assurance mechanisms for crowdsourcing tasks, where the models are used to assess the suitability and costs of existing approaches for different types of tasks. Further, a novel quality assurance mechanism solely based on user-interactions is proposed and its feasibility is shown. The findings from the analysis of existing platforms, the derived models, and the developed quality assurance mechanisms are finally used to derive best practices for two crowdsourcing use-cases, crowdsourcing-based network measurements and crowdsourcing-based subjective user studies. These two exemplary use-cases cover aspects typical for a large range of crowdsourcing tasks and illustrated the potential benefits, but also resulting challenges when using crowdsourcing. With the ongoing digitalization and globalization of the labor markets, the crowdsourcing paradigm is expected to gain even more importance in the next years. This is already evident in the currently new emerging fields of crowdsourcing, like enterprise crowdsourcing or mobile crowdsourcing. The models developed in the monograph enable platform providers to optimize their current systems and employers to optimize their workflows to increase their commercial success. Moreover, the results help to improve the general understanding of crowdsourcing systems, a key for identifying necessary adaptions and future improvements.}, subject = {Open Innovation}, language = {en} } @techreport{Metzger2020, type = {Working Paper}, author = {Metzger, Florian}, title = {Crowdsensed QoE for the community - a concept to make QoE assessment accessible}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203748}, pages = {7}, year = {2020}, abstract = {In recent years several community testbeds as well as participatory sensing platforms have successfully established themselves to provide open data to everyone interested. Each of them with a specific goal in mind, ranging from collecting radio coverage data up to environmental and radiation data. Such data can be used by the community in their decision making, whether to subscribe to a specific mobile phone service that provides good coverage in an area or in finding a sunny and warm region for the summer holidays. However, the existing platforms are usually limiting themselves to directly measurable network QoS. If such a crowdsourced data set provides more in-depth derived measures, this would enable an even better decision making. A community-driven crowdsensing platform that derives spatial application-layer user experience from resource-friendly bandwidth estimates would be such a case, video streaming services come to mind as a prime example. In this paper we present a concept for such a system based on an initial prototype that eases the collection of data necessary to determine mobile-specific QoE at large scale. In addition we reason why the simple quality metric proposed here can hold its own.}, subject = {Quality of Experience}, language = {en} } @techreport{OPUS4-20232, type = {Working Paper}, title = {White Paper on Crowdsourced Network and QoE Measurements - Definitions, Use Cases and Challenges}, editor = {Hoßfeld, Tobias and Wunderer, Stefan}, doi = {10.25972/OPUS-20232}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202327}, pages = {24}, year = {2020}, abstract = {The goal of the white paper at hand is as follows. The definitions of the terms build a framework for discussions around the hype topic 'crowdsourcing'. This serves as a basis for differentiation and a consistent view from different perspectives on crowdsourced network measurements, with the goal to provide a commonly accepted definition in the community. The focus is on the context of mobile and fixed network operators, but also on measurements of different layers (network, application, user layer). In addition, the white paper shows the value of crowdsourcing for selected use cases, e.g., to improve QoE or regulatory issues. Finally, the major challenges and issues for researchers and practitioners are highlighted. This white paper is the outcome of the W{\"u}rzburg seminar on "Crowdsourced Network and QoE Measurements" which took place from 25-26 September 2019 in W{\"u}rzburg, Germany. International experts were invited from industry and academia. They are well known in their communities, having different backgrounds in crowdsourcing, mobile networks, network measurements, network performance, Quality of Service (QoS), and Quality of Experience (QoE). The discussions in the seminar focused on how crowdsourcing will support vendors, operators, and regulators to determine the Quality of Experience in new 5G networks that enable various new applications and network architectures. As a result of the discussions, the need for a white paper manifested, with the goal of providing a scientific discussion of the terms "crowdsourced network measurements" and "crowdsourced QoE measurements", describing relevant use cases for such crowdsourced data, and its underlying challenges. During the seminar, those main topics were identified, intensively discussed in break-out groups, and brought back into the plenum several times. The outcome of the seminar is this white paper at hand which is - to our knowledge - the first one covering the topic of crowdsourced network and QoE measurements.}, subject = {Crowdsourcing}, language = {en} }