@article{AmichSchaffererHaasetal.2013, author = {Amich, Jorge and Schafferer, Lukas and Haas, Hubertus and Krappmann, Sven}, title = {Regulation of Sulphur Assimilation Is Essential for Virulence and Affects Iron Homeostasis of the Human-Pathogenic Mould Aspergillus fumigatus}, series = {PLoS Pathogens}, volume = {9}, journal = {PLoS Pathogens}, number = {8}, doi = {10.1371/journal.ppat.1003573}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130372}, pages = {e1003573}, year = {2013}, abstract = {Abstract Sulphur is an essential element that all pathogens have to absorb from their surroundings in order to grow inside their infected host. Despite its importance, the relevance of sulphur assimilation in fungal virulence is largely unexplored. Here we report a role of the bZIP transcription factor MetR in sulphur assimilation and virulence of the human pathogen Aspergillus fumigatus. The MetR regulator is essential for growth on a variety of sulphur sources; remarkably, it is fundamental for assimilation of inorganic S-sources but dispensable for utilization of methionine. Accordingly, it strongly supports expression of genes directly related to inorganic sulphur assimilation but not of genes connected to methionine metabolism. On a broader scale, MetR orchestrates the comprehensive transcriptional adaptation to sulphur-starving conditions as demonstrated by digital gene expression analysis. Surprisingly, A. fumigatus is able to utilize volatile sulphur compounds produced by its methionine catabolism, a process that has not been described before and that is MetR-dependent. The A. fumigatus MetR transcriptional activator is important for virulence in both leukopenic mice and an alternative mini-host model of aspergillosis, as it was essential for the development of pulmonary aspergillosis and supported the systemic dissemination of the fungus. MetR action under sulphur-starving conditions is further required for proper iron regulation, which links regulation of sulphur metabolism to iron homeostasis and demonstrates an unprecedented regulatory crosstalk. Taken together, this study provides evidence that regulation of sulphur assimilation is not only crucial for A. fumigatus virulence but also affects the balance of iron in this prime opportunistic pathogen. Author Summary Invasive pulmonary aspergillosis (IPA) is a life-threatening disease that affects primarily immunosuppressed patients. During the last decades the incidence of this disease that is accompanied by high mortality rates has increased. Since opportunistic pathogenic fungi, unlike other pathogens, do not express specific virulence factors, it is becoming more and more clear that the elucidation of fungal metabolism is an essential task to understand fungal pathogenicity and to identify novel antifungal targets. In this work we report genetic inactivation of the sulphur transcription regulator MetR in Aspergillus fumigatus and subsequent study of the resulting phenotypes and transcriptional deregulation of the mutant. Here we show that regulation of sulphur assimilation is an essential process for the manifestation of IPA. Moreover, a regulatory connection between sulphur metabolism and iron homeostasis, a further essential virulence determinant of A. fumigatus, is demonstrated in this study for the first time. A deeper knowledge of sulphur metabolism holds the promise of increasing our understanding of fungal virulence and might lead to improved antifungal therapy.}, language = {en} } @article{SchoenfelderMarincolaGeigeretal.2013, author = {Schoenfelder, Sonja M. K. and Marincola, Gabriella and Geiger, Tobias and Goerke, Christiane and Wolz, Christiane and Ziebuhr, Wilma}, title = {Methionine Biosynthesis in Staphylococcus aureus Is Tightly Controlled by a Hierarchical Network Involving an Initiator tRNA-Specific T-box Riboswitch}, series = {PLoS Pathogens}, volume = {9}, journal = {PLoS Pathogens}, number = {9}, doi = {10.1371/journal.ppat.1003606}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130365}, pages = {e1003606}, year = {2013}, abstract = {Abstract In line with the key role of methionine in protein biosynthesis initiation and many cellular processes most microorganisms have evolved mechanisms to synthesize methionine de novo. Here we demonstrate that, in the bacterial pathogen Staphylococcus aureus, a rare combination of stringent response-controlled CodY activity, T-box riboswitch and mRNA decay mechanisms regulate the synthesis and stability of methionine biosynthesis metICFE-mdh mRNA. In contrast to other Bacillales which employ S-box riboswitches to control methionine biosynthesis, the S. aureus metICFE-mdh mRNA is preceded by a 5′-untranslated met leader RNA harboring a T-box riboswitch. Interestingly, this T-box riboswitch is revealed to specifically interact with uncharged initiator formylmethionyl-tRNA \((tRNA_i^{fMet})\)while binding of elongator \(tRNA^{Met}\) proved to be weak, suggesting a putative additional function of the system in translation initiation control. met leader RNA/metICFE-mdh operon expression is under the control of the repressor CodY which binds upstream of the met leader RNA promoter. As part of the metabolic emergency circuit of the stringent response, methionine depletion activates RelA-dependent (p)ppGpp alarmone synthesis, releasing CodY from its binding site and thereby activating the met leader promoter. Our data further suggest that subsequent steps in metICFE-mdh transcription are tightly controlled by the 5′ met leader-associated T-box riboswitch which mediates premature transcription termination when methionine is present. If methionine supply is limited, and hence \((tRNA_i^{fMet})\) becomes uncharged, full-length met leader/metICFE-mdh mRNA is transcribed which is rapidly degraded by nucleases involving RNase J2. Together, the data demonstrate that staphylococci have evolved special mechanisms to prevent the accumulation of excess methionine. We hypothesize that this strict control might reflect the limited metabolic capacities of staphylococci to reuse methionine as, other than Bacillus, staphylococci lack both the methionine salvage and polyamine synthesis pathways. Thus, methionine metabolism might represent a metabolic Achilles' heel making the pathway an interesting target for future anti-staphylococcal drug development. Author Summary Prokaryote metabolism is key for our understanding of bacterial virulence and pathogenesis and it is also an area with huge opportunity to identify novel targets for antibiotic drugs. Here, we have addressed the so far poorly characterized regulation of methionine biosynthesis in S. aureus. We demonstrate that methionine biosynthesis control in staphylococci significantly differs from that predicted for other Bacillales. Notably, involvement of a T-box instead of an S-box riboswitch separates staphylococci from other bacteria in the order. We provide, for the first time, direct experimental proof for an interaction of a methionyl-tRNA-specific T-box with its cognate tRNA, and the identification of initiator \((tRNA_i^{fMet})\) as the specific binding partner is an unexpected finding whose exact function in Staphylococcus metabolism remains to be established. The data further suggest that in staphylococci a range of regulatory elements are integrated to form a hierarchical network that elegantly limits costly (excess) methionine biosynthesis and, at the same time, reliably ensures production of the amino acid in a highly selective manner. Our findings open a perspective to exploit methionine biosynthesis and especially its T-box-mediated control as putative target(s) for the development of future anti-staphylococcal therapeutics.}, language = {en} }