@phdthesis{Bertero2022, author = {Bertero, Edoardo}, title = {Mechano-energetic uncoupling in Barth syndrome cardiomyopathy}, doi = {10.25972/OPUS-25517}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-255176}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In this Doctoral Thesis we investigated the consequences of perturbed mitochondrial calcium handling in the context of a rare human disease, Barth syndrome, in which the altered phospholipid composition of the inner mitochondrial membrane affects the structural organization of several protein complexes, including the mitochondrial calcium uniporter. We discovered that loss of the mitochondrial calcium uniporter in cardiac, but not skeletal muscle mitochondria hinders the calcium-induced adaptation of mitochondrial oxidative metabolism during workload transitions. This mechano-energetic uncoupling impairs the physiological increase in contractile force during physical exercise and might predispose Barth syndrome patients to the development of arrhythmias.}, language = {en} } @phdthesis{Chowdhury2018, author = {Chowdhury, Suvagata Roy}, title = {The Role of MicroRNAs in \(Chlamydia\) Infection}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155866}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The obligate intracellular pathogen Chlamydia trachomatis is the causative agent of trachoma related blindness and the sexually transmitted pelvic inflammatory disease. Being an obligate intracellular pathogen, C. trachomatis has an intricate dependency on the survival of the host cell. This relationship is indispensible owing to the fact that the pathogen spends a considerable fraction of its biphasic lifecycle within a cytoplasmic vacuole inside the host cell, the so-called chlamydial inclusion. The cellular apoptotic-signalling network is governed by several finely tuned regulatory cascades composed of pro- and anti-apoptotic proteins that respond to changes in the cellular homeostasis. In order to facilitate its intracellular survival, Chlamydia has been known to inhibit the premature apoptosis of the host cell via the stabilization of several host anti-apoptotic proteins such as cIAP2 and Mcl-1. While the pro- and anti-apoptotic proteins are the major regulators of the host apoptotic signalling network, a class of the small non-coding RNAs called microRNAs (miRNAs) has increasingly gained focus as a new level of regulatory control over apoptosis. This work investigates the changes in the host miRNA expression profile post Chlamydia infection using a high throughput miRNA deep sequencing approach. Several miRNAs previously associated with the modulation for apoptotic signalling were differentially expressed upon Chlamydia infection in human endothelial cells. Of the differentially regulated miRNAs, miR-30c-5p was of particular interest since it had been previously shown to target the tumor suppressor protein p53. Our lab and others have previously demonstrated that Chlamydia can downregulate the levels of p53 by promoting its proteasomal degradation. This work demonstrates that Chlamydia infection promotes p53 downregulation by increasing the abundance of miR-30c-5p and a successful infection cycle is hindered by a loss of miR-30c-5p. Over the last decade, dedicated research aimed towards a better understanding of apoptotic stimuli has greatly improved our grasp on the subject. While extrinsic stress, deprivation of survival signals and DNA damage are regarded as major proponents of apoptotic induction, a significant responsibility lies with the mitochondrial network of the cell. Mitochondrial function and dynamics are crucial to cell fate determination and dysregulation of either is decisive for cell survival and pathogenesis of several diseases. The ability of the mitochondrial network to perform its essential tasks that include ATP synthesis, anti-oxidant defense, and calcium homeostasis amongst numerous other processes critical to cellular equilibrium is tied closely to the fission and fusion of individual mitochondrial fragments. It is, thus, 8 unsurprising that mitochondrial dynamics is closely linked to apoptosis. In fact, many of the proteins involved regulation of mitochondrial dynamics are also involved in apoptotic signalling. The mitochondrial fission regulator, Drp1 has previously been shown to be transcriptionally regulated by p53 and is negatively affected by a miR- 30c mediated inhibition of p53. Our investigation reveals a significant alteration in the mitochondrial dynamics of Chlamydia infected cells affected by the loss of Drp1. We show that loss of Drp1 upon chlamydial infection is mediated by the miR-30c-5p induced depletion of p53 and results in a hyper-fused architecture of the mitochondrial network. While it is widely accepted that Chlamydia depends on the host cell metabolism for its intracellular growth and development, the role of mitochondria in an infected cell, particularly with respect to its dynamic nature, has not been thoroughly investigated. This work attempts to illustrate the dependence of Chlamydia on miR-30c-5p induced changes in the mitochondrial architecture and highlight the importance of these modulations for chlamydial growth and development.}, subject = {Chlamydienkrankheit}, language = {en} } @phdthesis{Kunz2021, author = {Kunz, Tobias C.}, title = {Expansion Microscopy (ExM) as a tool to study organelles and intracellular pathogens}, doi = {10.25972/OPUS-22333}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223330}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The resolution of fluorescence light microscopy was long believed to be limited by the diffraction limit of light of around 200-250 nm described in 1873 by Ernst Abbe. Within the last decade, several approaches, such as structured illumination microscopy (SIM), stimulated emission depletion STED and (direct) stochastic optical reconstruction microscopy (d)STORM have been established to bypass the diffraction limit. However, such super-resolution techniques enabling a resolution <100 nm require specialized and expensive setups as well as expert knowledge in order to avoid artifacts. They are therefore limited to specialized laboratories. Recently, Boyden and colleagues introduced an alternate approach, termed expansion microscopy (ExM). The latter offers the possibility to perform superresolution microscopy on conventional confocal microscopes by embedding the sample into a swellable hydrogel that is isotropically expanded. Since its introduction in 2015, expansion microscopy has developed rapidly offering protocols for 4x, 10x and 20x expansion of proteins and RNA in cells, tissues and human clinical specimens. Mitochondria are double membrane-bound organelles and crucial to the cell by performing numerous tasks, from ATP production through oxidative phosphorylation, production of many important metabolites, cell signaling to the regulation of apoptosis. The inner mitochondrial membrane is strongly folded forming so-called cristae. Besides being the location of the oxidative phosphorylation and therefore energy conversion and ATP production, cristae have been of great interest because changes in morphology have been linked to a plethora of diseases from cancer, diabetes, neurodegenerative diseases, to aging and infection. However, cristae imaging remains challenging as the distance between two individual cristae is often below 100 nm. Within this work, we demonstrate that the mitochondrial creatine kinase MtCK linked to fluorescent protein GFP (MtCK-GFP) can be used as a cristae marker. Upon fourfold expansion, we illustrate that our novel marker enables visualization of cristae morphology and localization of mitochondrial proteins relative to cristae without the need for specialized setups. Furthermore, we show the applicability of expansion microscopy for several bacterial pathogens, such as Chlamydia trachomatis, Simkania negevensis, Neisseria gonorrhoeae and Staphylococcus aureus. Due to differences in bacterial cell walls, we reveal important aspects for the digestion of pathogens for isotropic expansion. We further show that expansion of the intracellular pathogens C. trachomatis and S. negevensis, enables the differentiation between the two distinct developmental forms, catabolic active reticulate bodies (RB) and infectious elementary bodies (EB), on a conventional confocal microscope. We demonstrate the possibility to precisely locate chlamydial effector proteins, such as CPAF or Cdu1, within and outside the chlamydial inclusion. Moreover, we show that expansion microscopy enables the investigation of bacteria, herein S. aureus, within LAMP1 and LC3-II vesicles. With the introduction of the unnatural α-NH2-ω-N3-C6-ceramide, we further present the first approach for the expansion of lipids that may also be suitable for far inaccessible molecule classes like carbohydrates. The efficient accumulation and high labeling density of our functionalized α-NH2-ω-N3-C6-ceramide in both cells and bacteria enables in combination with tenfold expansion nanoscale resolution (10-20 nm) of the interaction of proteins with the plasma membrane, membrane of organelles and bacteria. Ceramide is the central molecule of the sphingolipid metabolism, an important constituent of cellular membranes and regulates many important cellular processes such as differentiation, proliferation and apoptosis. Many studies report about the importance of sphingolipids during infection of various pathogens. While the transport of ceramide to Chlamydia has been reported earlier, one of the unanswered questions remaining was if ceramide forms parts of the outer or inner bacterial membrane. Expansion of α-NH2-ω-N3-C6-ceramide enabled the visualization of ceramide in the inner and outer membrane of C. trachomatis and their distance was determined to be 27.6 ± 7.7 nm.}, subject = {Fluoreszenzmikroskopie}, language = {en} }