@phdthesis{Bertlein2019, author = {Bertlein, Sarah}, title = {Hydrogels as Biofunctional Coatings and Thiol-Ene Clickable Bioinks for Biofabrication}, doi = {10.25972/OPUS-17422}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174225}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Ziel dieser Arbeit war die Entwicklung von funktionalisierbaren Hydrogel Beschichtungen f{\"u}r Schmelz-elektrogeschriebene PCL Ger{\"u}ste und von Bio-druckbaren Hydrogelen f{\"u}r die Biofabrikation. Hydrogel Beschichtungen von Schmelz-elektrogeschriebenen Konstrukten erm{\"o}glichten die Kontrolle der Oberfl{\"a}chen-Hydrophilie und damit Zell-Material Interaktionsstudien in minimal Protein-adh{\"a}siven Umgebungen. Zu diesem Zweck wurde ein hydrophiles sternf{\"o}rmiges vernetzbares Polymer verwendet und eine Optimierung der Beschichtungsbedingungen durchgef{\"u}hrt. Außerdem boten neu entwickelte photosensitive Konstrukte eine Zeit- und pH-unabh{\"a}ngige Biofunktionalisierung. Bio-druckbare Hydrogele f{\"u}r die Biofabrikation basierten auf der Allyl-Funktionalisierung von Gelatine (GelAGE) und modifizierten Hyalurons{\"a}ure-Produkten, die das Hydrogel-Vernetzen mittels Thiol-En Click Chemie erm{\"o}glichen. Die Optimierung der GelAGE Hydrogel-Eigenschaften wurde durch eine detaillierte Analyse der Syntheseparameter, variierender En:SH Verh{\"a}ltnisse, unterschiedlicher Vernetzungsmolek{\"u}le und Photoinitiatoren erreicht. Die Homogenit{\"a}t der Thiol-En Netzwerke wurde mit denen der freien radikalischen Polymerisation verglichen und die Verwendbarkeit von GelAGE als Bio-Tinte f{\"u}r den Extrusions-basierten Bio-Druck wurde untersucht. Es wurde angenommen, dass reine Hyalurons{\"a}ure-basierte Bio-Tinten eine Beibehaltung der mechanischen und rheologischen Eigenschaften, der Zellviabilit{\"a}t und der Prozessierbarkeit erm{\"o}glichen trotz geringerem Polymer- und Thiol-Anteil der Hydrogele. Hydrogel-Beschichtungen: Hoch definierte PCL Ger{\"u}ste wurden mittels MEW hergestellt und anschließend mit sechs armigen sternf{\"o}rmigen vernetzbaren Polymeren (sP(EO-stat-PO)) beschichtet. Die Vernetzung wird durch die w{\"a}ssrig-induzierte Hydrolyse reaktiver Isocyanatgruppen (NCO) von sP(EO-stat-PO) bedingt. Diese Beschichtung erh{\"o}hte die Oberfl{\"a}chen-Hydrophilie und stellte eine Plattform f{\"u}r weitere Biofunktionalisierungen, in minimal Protein-adh{\"a}siven Umgebungen, dar. Nicht nur das Beschichtungsprotokoll wurde hinsichtlich der sP(EO-stat-PO) Konzentrationen und der Beschichtungsdauern optimiert, sondern auch Vorbehandlungen der Ger{\"u}ste wurden entwickelt. Diese waren essentiell um die finale Hydrophilie von sP(EO-stat-PO) beschichteten Ger{\"u}ste so zu erh{\"o}hen, dass unspezifische Protein-Adh{\"a}sionen vollst{\"a}ndig unterbunden wurden. Die sP(EO-stat-PO) Schichtdicke, von ungef{\"a}hr 100 nm, erm{\"o}glicht generell in vitro Studien nicht nur in Abh{\"a}ngigkeit der Ger{\"u}st-Biofunktionalisierung, sondern auch in Abh{\"a}ngigkeit der Ger{\"u}st-Architektur durchzuf{\"u}hren. Das Ausmaß der Hydrogel-Beschichtung wurde mittels einer indirekten Quantifizierung der NCO-Hydrolyse-Produkte ermittelt. Kenntnis {\"u}ber die NCO-Hydrolyse-Kinetik erm{\"o}glichte ein Gleichgewicht zwischen ausreichend beschichteten Ger{\"u}sten und der Pr{\"a}senz der NCO-Gruppen herzustellen, welche f{\"u}r die anschließenden Biofunktionalisierungen genutzt wurden. Diese Zeit- und pH-abh{\"a}ngige Biofunktionalisierung war jedoch nur f{\"u}r kleine Biomolek{\"u}le m{\"o}glich. Um diese Beschr{\"a}nkung zu umgehen und auch hochmolekulare Biomolek{\"u}le kovalent anzubinden, wurde ein anderer Reaktionsweg entwickelt. Dieser basierte auf der Photolyse von Diazirin-Gruppen und erm{\"o}glichte eine Zeit- und pH-unabh{\"a}ngige Biofunktionalisierung der Ger{\"u}ste mit Streptavidin und Kollagen Typ I. Die Fibrillen bildende Eigenschaft von Kollagen wurde genutzt um auf den Ger{\"u}sten verschiedene Kollagen-Konformationen zu erhalten und eine erste in vitro Studie best{\"a}tigte die Anwendbarkeit f{\"u}r Zell-Material Interaktionsstudien. Die hier entwickelten Ger{\"u}ste k{\"o}nnten verwendet werden um tiefere Einblicke in die Grundlagen der zellul{\"a}ren Wahrnehmung zu erhalten. Insbesondere die Komplexit{\"a}t mit der Zellen z.B. Kollagen wahrnehmen bleibt weiterhin kl{\"a}rungsbed{\"u}rftig. Hierf{\"u}r k{\"o}nnten diverse Hierarchien von Kollagen-{\"a}hnlichen Konformationen an die Ger{\"u}ste gebunden werden, z.B. Gelatine oder Kollagen-abgeleitete Peptidsequenzen. Dann k{\"o}nnte die Aktivierung der DDR-Rezeptoren in Abh{\"a}ngigkeit der Komplexit{\"a}t der angebundenen Substanzen bestimmt werden. Aufgrund der starken Streptavidin-Biotin Bindung k{\"o}nnten Streptavidin funktionalisierte Ger{\"u}ste eine vielseitige Plattform f{\"u}r die Immobilisierung von jeglichen biotinylierten Molek{\"u}len darstellen. Gelatine-basierte Bio-Tinten: Zuerst wurden die GelAGE-Produkte hinsichtlich der Molekulargewichts-Verteilung und der Integrit{\"a}t der Aminos{\"a}uren-Zusammensetzung synthetisiert. Eine detailliert Studie, mit variierenden molaren Edukt-Verh{\"a}ltnissen und Synthese-Zeitspannen, wurde durchgef{\"u}hrt und implizierte, dass der Gelatine Abbau am deutlichsten f{\"u}r stark alkalische Synthesebedingungen mit langen Reaktionszeiten war. Gelatine beinhaltet mehrere funktionalisierbare Gruppen und anhand diverser Model-Substanzen und Analysen wurde die vorrangige Amingruppen-Funktionalisierung ermittelt. Die Homogenit{\"a}t des GelAGE-Polymernetzwerkes, im Vergleich zu frei radikalisch polymerisierten GelMA-Hydrogelen, wurde best{\"a}tigt. Eine ausf{\"u}hrliche Analyse der Hydrogel-Zusammensetzungen mit variierenden funktionellen Gruppen Verh{\"a}ltnissen und UV- oder Vis-Licht induzierbaren Photoinitiatoren wurde durchgef{\"u}hrt. Die UV-Initiator Konzentration ist aufgrund der Zell-Toxizit{\"a}t und der potenziellen zellul{\"a}ren DNA-Besch{\"a}digung durch UV-Bestrahlung eingeschr{\"a}nkt. Das Zell-kompatiblere Vis-Initiator System hingegen erm{\"o}glichte, durch die kontrollierte Photoinitiator-Konzentration bei konstanten En:SH Verh{\"a}ltnissen und Polymeranteilen, die Einstellung der mechanischen Eigenschaften {\"u}ber eine große Spanne hinweg. Die Flexibilit{\"a}t der GelAGE Bio-Tinte f{\"u}r unterschiedliche additive Fertigungstechniken konnte, durch Ausnutzung des temperaturabh{\"a}ngigen Gelierungsverhaltens unterschiedlich stark degradierter GelAGE Produkte, f{\"u}r Stereolithographie und Extrusions-basiertem Druck bewiesen werden. Außerdem wurde die Viabilit{\"a}t zellbeladener GelAGE Konstrukte bewiesen, die mittels Extrusions-basiertem Bio-Druck erhalten wurden. Die Verwendung diverser multifunktioneller und makromolekularer Thiol-Vernetzungsmolek{\"u}le erm{\"o}glichte eine Verbesserung der mechanischen und rheologischen Eigenschaften und ebenso der Prozessierbarkeit. Verglichen mit dem kleinen bis-Thiol-funktionellen Vernetzungsmolek{\"u}l waren geringere Thiol-Vernetzer-Konzentrationen notwendig um bessere mechanische Festigkeiten und physikochemische Eigenschaften der Hydrogele zu erhalten. Der Extrusions-basierte Bio-Druck unterschiedlicher eingekapselter Zellen verdeutlichte die Notwendigkeit der individuellen Optimierung von Zell-beladenen Hydrogel-Formulierungen. Nicht nur die Zellviabilit{\"a}t von eingekapselten Zellen in Extrusions-basierten biogedruckten Konstrukten sollte bewertet werden, sondern auch andere Parameter wie die Zellmorphologie oder die Kollagen- oder Glykosaminoglykan-Produktion, da diese einige der essentiellen Voraussetzungen f{\"u}r die Verwendung in Knorpel Tissue Engineering Konzepten darstellen. Außerdem sollten diese Studien auf die stereolithographischen Ans{\"a}tze erweitert werden und letztlich w{\"a}re die Flexibilit{\"a}t und Zellkompatibilit{\"a}t der Formulierungen mit makromolekularen Vernetzern von Interesse. Makromolekulare Vernetzer erm{\"o}glichten die Reduktion des Polymeranteils und des Thiol-Gehalts und k{\"o}nnen, insbesondere in Kombination mit dem Zell-kompatibleren Vis-Initiator-System, voraussichtlich zu einer gesteigerten Zellkompatibilit{\"a}t beitragen, was zu kl{\"a}ren bleibt. Hyalurons{\"a}ure-basierte Bio-Tinten: Unterschiedliche Hyalurons{\"a}ure-Produkte (HA) wurden synthetisiert, sodass diese En- (HAPA) oder Thiol-Funktionalit{\"a}ten (LHASH) beinhalteten, um reine HA Thiol-En vernetzte Hydrogele zu erhalten. In Abh{\"a}ngigkeit des Molekulargewichts der HA-Produkte, der Polymeranteile und des En:SH Verh{\"a}ltnisses, konnte eine große Spanne an mechanischen Festigkeiten abgedeckt werden. Aufgrund der hohen Viskosit{\"a}t war allerdings im Falle von hochmolekularen HA (HHAPA) Produkt-L{\"o}sungen (HHAPA + LHASH) die Handhabbarkeit auf 5.0 wt.-\% beschr{\"a}nkt. Die Verwendung der gleichen HA Thiol-Komponenten (LHASH) erm{\"o}glichte Hybrid-Hydrogele, mit HA und GelAGE, mit reinen HA-Hydrogelen zu vergleichen. Obwohl der Polymeranteil von HHAPA + LHASH Hydrogelen signifikant geringer war, als im Vergleich zu Hybrid-Hydrogelen (GelAGE + LHASH), wurden f{\"u}r gleiche En:SH Verh{\"a}ltnisse {\"a}hnliche mechanische und physikochemische Eigenschaften reiner HA-Hydrogele bestimmt. Aufgrund der geringen Viskosit{\"a}t niedermolekularer HA L{\"o}sungen (LHAPA + LHASH) konnten diese nicht f{\"u}r den Extrusions-basierten Druck verwendet werden. Das nicht temperaturabh{\"a}ngige HHAPA + LHASH System hingegen konnte mit nur einem Viertel des Polymeranteils der Hybrid Formulierungen gedruckt werden. Im Vergleich zu der Hybrid Bio-Tinte wurde angenommen, dass das hoch viskose Verhalten von HHAPA + LHASH L{\"o}sungen, der geringere Polymeranteil, der geringere Druck f{\"u}r das Drucken und eine demzufolge geringere Scherspannung, maßgeblich zu der hohen Zellviabilit{\"a}t in Extrusions-basiert-biogedruckten Konstrukten beisteuerten. Die niedrigmolekulare HA Formulierung (LHAPA + LHASH) konnte zwar nicht f{\"u}r den Extrusions-basierten Druck verwendet werden, allerdings besitzt dieses System Potential f{\"u}r andere additive Fertigungstechniken wie z.B. der Stereolithographie. Um dieses System weiterzuentwickeln w{\"a}re, analog zu dem GelAGE System, eine detailliertere Studie zu den Funktionen eingekapselter Zellen hilfreich. Außerdem sollte die Initiierung dieses Systems mit dem Vis-Initiator untersucht werden.}, subject = {Biomaterial}, language = {en} } @article{DiloksumpandeRuijterCastilhoetal.2020, author = {Diloksumpan, Paweena and de Ruijter, Myl{\`e}ne and Castilho, Miguel and Gbureck, Uwe and Vermonden, Tina and van Weeren, P Ren{\´e} and Malda, Jos and Levato, Riccardo}, title = {Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces}, series = {Biofabrication}, volume = {12}, journal = {Biofabrication}, number = {2}, doi = {10.1088/1758-5090/ab69d9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254005}, year = {2020}, abstract = {Multi-material 3D printing technologies that resolve features at different lengths down to the microscale open new avenues for regenerative medicine, particularly in the engineering of tissue interfaces. Herein, extrusion printing of a bone-biomimetic ceramic ink and melt electrowriting (MEW) of spatially organized polymeric microfibres are integrated for the biofabrication of an osteochondral plug, with a mechanically reinforced bone-to-cartilage interface. A printable physiological temperature-setting bioceramic, based on α-tricalcium phosphate, nanohydroxyapatite and a custom-synthesized biodegradable and crosslinkable poloxamer, was developed as bone support. The mild setting reaction of the bone ink enabled us to print directly within melt electrowritten polycaprolactone meshes, preserving their micro-architecture. Ceramic-integrated MEW meshes protruded into the cartilage region of the composite plug, and were embedded with mechanically soft gelatin-based hydrogels, laden with articular cartilage chondroprogenitor cells. Such interlocking design enhanced the hydrogel-to-ceramic adhesion strength >6.5-fold, compared with non-interlocking fibre architectures, enabling structural stability during handling and surgical implantation in osteochondral defects ex vivo. Furthermore, the MEW meshes endowed the chondral compartment with compressive properties approaching those of native cartilage (20-fold reinforcement versus pristine hydrogel). The osteal and chondral compartment supported osteogenesis and cartilage matrix deposition in vitro, and the neo-synthesized cartilage matrix further contributed to the mechanical reinforcement at the ceramic-hydrogel interface. This multi-material, multi-scale 3D printing approach provides a promising strategy for engineering advanced composite constructs for the regeneration of musculoskeletal and connective tissue interfaces.}, language = {en} } @phdthesis{Forster2023, author = {Forster, Leonard}, title = {Hyaluronic acid based Bioinks for Biofabrication of Mesenchymal Stem Cells}, doi = {10.25972/OPUS-29860}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298603}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {As a major component of the articular cartilage extracellular matrix, hyaluronic acid is a widely used biomaterial in regenerative medicine and tissue engineering. According to its well-known interaction with multiple chondrocyte surface receptors which positively affects many cellular pathways, some approaches by combining mesenchymal stem cells and hyaluronic acid-based hydrogels are already driven in the field of cartilage regeneration and fat tissue. Nevertheless, a still remaining major problem is the development of the ideal matrix for this purpose. To generate a hydrogel for the use as a matrix, hyaluronic acid must be chemically modified, either derivatized or crosslinked and the resulting hydrogel is mostly shaped by the mold it is casted in whereas the stem cells are embedded during or after the gelation procedure which does not allow for the generation of zonal hierarchies, cell density or material gradients. This thesis focuses on the synthesis of different hyaluronic acid derivatives and poly(ethylene glycol) crosslinkers and the development of different hydrogel and bioink compositions that allow for adjustment of the printability, integration of growth factors, but also for the material and biological hydrogel, respectively bioink properties.}, language = {en} } @article{HahnBeudertGutmannetal.2021, author = {Hahn, Lukas and Beudert, Matthias and Gutmann, Marcus and Keßler, Larissa and Stahlhut, Philipp and Fischer, Lena and Karakaya, Emine and Lorson, Thomas and Thievessen, Ingo and Detsch, Rainer and L{\"u}hmann, Tessa and Luxenhofer, Robert}, title = {From Thermogelling Hydrogels toward Functional Bioinks: Controlled Modification and Cytocompatible Crosslinking}, series = {Macromolecular Bioscience}, volume = {21}, journal = {Macromolecular Bioscience}, number = {10}, doi = {10.1002/mabi.202100122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257542}, year = {2021}, abstract = {Hydrogels are key components in bioink formulations to ensure printability and stability in biofabrication. In this study, a well-known Diels-Alder two-step post-polymerization modification approach is introduced into thermogelling diblock copolymers, comprising poly(2-methyl-2-oxazoline) and thermoresponsive poly(2-n-propyl-2-oxazine). The diblock copolymers are partially hydrolyzed and subsequently modified by acid/amine coupling with furan and maleimide moieties. While the thermogelling and shear-thinning properties allow excellent printability, trigger-less cell-friendly Diels-Alder click-chemistry yields long-term shape-fidelity. The introduced platform enables easy incorporation of cell-binding moieties (RGD-peptide) for cellular interaction. The hydrogel is functionalized with RGD-peptides using thiol-maleimide chemistry and cell proliferation as well as morphology of fibroblasts seeded on top of the hydrogels confirm the cell adhesion facilitated by the peptides. Finally, bioink formulations are tested for biocompatibility by incorporating fibroblasts homogenously inside the polymer solution pre-printing. After the printing and crosslinking process good cytocompatibility is confirmed. The established bioink system combines a two-step approach by physical precursor gelation followed by an additional chemical stabilization, offering a broad versatility for further biomechanical adaptation or bioresponsive peptide modification.}, language = {en} } @article{HauptsteinForsterNadernezhadetal.2022, author = {Hauptstein, Julia and Forster, Leonard and Nadernezhad, Ali and Groll, J{\"u}rgen and Teßmar, J{\"o}rg and Blunk, Torsten}, title = {Tethered TGF-β1 in a hyaluronic acid-based bioink for bioprinting cartilaginous tissues}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms23020924}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284239}, year = {2022}, abstract = {In 3D bioprinting for cartilage regeneration, bioinks that support chondrogenic development are of key importance. Growth factors covalently bound in non-printable hydrogels have been shown to effectively promote chondrogenesis. However, studies that investigate the functionality of tethered growth factors within 3D printable bioinks are still lacking. Therefore, in this study, we established a dual-stage crosslinked hyaluronic acid-based bioink that enabled covalent tethering of transforming growth factor-beta 1 (TGF-β1). Bone marrow-derived mesenchymal stromal cells (MSCs) were cultured over three weeks in vitro, and chondrogenic differentiation of MSCs within bioink constructs with tethered TGF-β1 was markedly enhanced, as compared to constructs with non-covalently incorporated TGF-β1. This was substantiated with regard to early TGF-β1 signaling, chondrogenic gene expression, qualitative and quantitative ECM deposition and distribution, and resulting construct stiffness. Furthermore, it was successfully demonstrated, in a comparative analysis of cast and printed bioinks, that covalently tethered TGF-β1 maintained its functionality after 3D printing. Taken together, the presented ink composition enabled the generation of high-quality cartilaginous tissues without the need for continuous exogenous growth factor supply and, thus, bears great potential for future investigation towards cartilage regeneration. Furthermore, growth factor tethering within bioinks, potentially leading to superior tissue development, may also be explored for other biofabrication applications.}, language = {en} } @article{HauptsteinForsterNadernezhadetal.2022, author = {Hauptstein, Julia and Forster, Leonard and Nadernezhad, Ali and Horder, Hannes and Stahlhut, Philipp and Groll, J{\"u}rgen and Blunk, Torsten and Teßmar, J{\"o}rg}, title = {Bioink Platform Utilizing Dual-Stage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells}, series = {Macromolecular Bioscience}, volume = {22}, journal = {Macromolecular Bioscience}, number = {2}, doi = {10.1002/mabi.202100331}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257556}, pages = {2100331}, year = {2022}, abstract = {3D bioprinting often involves application of highly concentrated polymeric bioinks to enable fabrication of stable cell-hydrogel constructs, although poor cell survival, compromised stem cell differentiation, and an inhomogeneous distribution of newly produced extracellular matrix (ECM) are frequently observed. Therefore, this study presents a bioink platform using a new versatile dual-stage crosslinking approach based on thiolated hyaluronic acid (HA-SH), which not only provides stand-alone 3D printability but also facilitates effective chondrogenic differentiation of mesenchymal stromal cells. A range of HA-SH with different molecular weights is synthesized and crosslinked with acrylated (PEG-diacryl) and allylated (PEG-diallyl) polyethylene glycol in a two-step reaction scheme. The initial Michael addition is used to achieve ink printability, followed by UV-mediated thiol-ene reaction to stabilize the printed bioink for long-term cell culture. Bioinks with high molecular weight HA-SH (>200 kDa) require comparably low polymer content to facilitate bioprinting. This leads to superior quality of cartilaginous constructs which possess a coherent ECM and a strongly increased stiffness of long-term cultured constructs. The dual-stage system may serve as an example to design platforms using two independent crosslinking reactions at one functional group, which allows adjusting printability as well as material and biological properties of bioinks.}, language = {en} } @phdthesis{Lorson2019, author = {Lorson, Thomas}, title = {Novel Poly(2-oxazoline) Based Bioinks}, doi = {10.25972/OPUS-18051}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180514}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Motivated by the great potential which is offered by the combination of additive manufacturing and tissue engineering, a novel polymeric bioink platform based on poly(2 oxazoline)s was developed which might help to further advance the young and upcoming field of biofabrication. In the present thesis, the synthesis as well as the characteristics of several diblock copolymers consisting of POx and POzi have been investigated with a special focus on their suitability as bioinks. In general, the copolymerization of 2-oxazolines and 2-oxazines bearing different alkyl side chains was demonstrated to yield polymers in good agreement with the degree of polymerization aimed for and moderate to low dispersities. For every diblock copolymer synthesized during the present study, a more or less pronounced dependency of the dynamic viscosity on temperature could be demonstrated. Diblock copolymers comprising a hydrophilic PMeOx block and a thermoresponsive PnPrOzi block showed temperature induced gelation above a degree of polymerization of 50 and a polymer concentration of 20 wt\%. Such a behavior has never been described before for copolymers solely consisting of poly(cyclic imino ether)s. Physically cross linked hydrogels based on POx b POzi copolymers exhibit reverse thermal gelation properties like described for solutions of PNiPAAm and Pluronic F127. However, by applying SANS, DLS, and SLS it could be demonstrated that the underlying gel formation mechanism is different for POx b POzi based hydrogels. It appears that polymersomes with low polydispersity are formed already at very low polymer concentrations of 6 mg/L. Increasing the polymer concentration resulted in the formation of a bicontinuous sponge like structure which might be formed due to the merger of several vesicles. For longer polymer chains a phase transition into a gyroid structure was postulated and corresponds well with the observed rheological data. Stable hydrogels with an unusually high mechanical strength (G' ~ 4 kPa) have been formed above TGel which could be adjusted over a range of 20 °C by changing the degree of polymerization if maintaining the symmetric polymer architecture. Variations of the chain ends revealed only a minor influence on TGel whereas the influence of the solvent should not be neglected as shown by a comparison of cell culture medium and MilliQ water. Rotationally as well as oscillatory rheological measurements revealed a high suitability for printing as POx b POzi based hydrogels exhibit strong shear thinning behavior in combination with outstanding recovery properties after high shear stress. Cell viability assays (WST-1) of PMeOx b PnPrOzi copolymers against NIH 3T3 fibroblasts and HaCat cells indicated that the polymers were well tolerated by the cells as no dose-dependent cytotoxicity could be observed after 24 h at non-gelling concentrations up to 100 g/L. In summary, copolymers consisting of POx and POzi significantly increased the accessible range of properties of POx based materials. In particular thermogelation of aqueous solutions of diblock copolymers comprising PMeOx and PnPrOzi was never described before for any copolymer consisting solely of POx or POzi. In combination with other characteristics, e.g. very good cytocompatibility at high polymer concentrations and comparably high mechanical strength, the formed hydrogels could be successfully used for 3D bioprinting. Although the results appear promising and the developed hydrogel is a serious bioink candidate, competition is tough and it remains an open question which system or systems will be used in the future.}, subject = {Polymere}, language = {en} } @phdthesis{Nahm2021, author = {Nahm, Daniel}, title = {Poly(2-oxazine) Based Biomaterial Inks for the Additive Manufacturing of Microperiodic Hydrogel Scaffolds}, doi = {10.25972/OPUS-24598}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245987}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The aim of this thesis was the preparation of a biomaterial ink for the fabrication of chemically crosslinked hydrogel scaffolds with low micron sized features using melt electrowriting (MEW). By developing a functional polymeric material based on 2-alkyl-2-oxazine (Ozi) and 2-alkyl-2-oxazoline (Ox) homo- and copolymers in combination with Diels-Alder (DA)-based dynamic covalent chemistry, it was possible to achieve this goal. This marks an important step for the additive manufacturing technique melt electrowriting (MEW), as soft and hydrophilic structures become available for the first time. The use of dynamic covalent chemistry is a very elegant and efficient method for consolidating covalent crosslinking with melt processing. It was shown that the high chemical versatility of the Ox and Ozi chemistry offers great potential to control the processing parameters. The established platform offers straight forward potential for modification with biological cues and fluorescent markers. This is essential for advanced biological applications. The physical properties of the material are readily controlled and the potential for 4D-printing was highlighted as well. The developed hydrogel architectures are excellent candidates for 3D cell culture applications. In particular, the low internal strength of some of the scaffolds in combination with the tendency of such constructs to collapse into thin strings could be interesting for the cultivation of muscle or nerve cells. In this context it was also possible to show that MEW printed hydrogel scaffolds can withstand the aspiration and ejection through a cannula. This allows the application as scaffolds for the minimally invasive delivery of implants or functional tissue equivalent structures to various locations in the human body.}, subject = {Polymere}, language = {en} } @article{RymaTylekLiebscheretal.2021, author = {Ryma, Matthias and Tylek, Tina and Liebscher, Julia and Blum, Carina and Fernandez, Robin and B{\"o}hm, Christoph and Kastenm{\"u}ller, Wolfgang and Gasteiger, Georg and Groll, J{\"u}rgen}, title = {Translation of collagen ultrastructure to biomaterial fabrication for material-independent but highly efficient topographic immunomodulation}, series = {Advanced materials}, volume = {33}, journal = {Advanced materials}, number = {33}, doi = {10.1002/adma.202101228}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256381}, year = {2021}, abstract = {Supplement-free induction of cellular differentiation and polarization solely through the topography of materials is an auspicious strategy but has so far significantly lagged behind the efficiency and intensity of media-supplementation-based protocols. Consistent with the idea that 3D structural motifs in the extracellular matrix possess immunomodulatory capacity as part of the natural healing process, it is found in this study that human-monocyte-derived macrophages show a strong M2a-like prohealing polarization when cultured on type I rat-tail collagen fibers but not on collagen I films. Therefore, it is hypothesized that highly aligned nanofibrils also of synthetic polymers, if packed into larger bundles in 3D topographical biomimetic similarity to native collagen I, would induce a localized macrophage polarization. For the automated fabrication of such bundles in a 3D printing manner, the strategy of "melt electrofibrillation" is pioneered by the integration of flow-directed polymer phase separation into melt electrowriting and subsequent selective dissolution of the matrix polymer postprocessing. This process yields nanofiber bundles with a remarkable structural similarity to native collagen I fibers, particularly for medical-grade poly(ε-caprolactone). These biomimetic fibrillar structures indeed induce a pronounced elongation of human-monocyte-derived macrophages and unprecedentedly trigger their M2-like polarization similar in efficacy as interleukin-4 treatment.}, language = {en} } @article{SchmidSchmidtHazuretal.2020, author = {Schmid, Rafael and Schmidt, Sonja K. and Hazur, Jonas and Detsch, Rainer and Maurer, Evelyn and Boccaccini, Aldo R. and Hauptstein, Julia and Teßmar, J{\"o}rg and Blunk, Torsten and Schr{\"u}fer, Stefan and Schubert, Dirk W. and Horch, Raymund E. and Bosserhoff, Anja K. and Arkudas, Andreas and Kengelbach-Weigand, Annika}, title = {Comparison of hydrogels for the development of well-defined 3D cancer models of breast cancer and melanoma}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {8}, issn = {2072-6694}, doi = {10.3390/cancers12082320}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211195}, year = {2020}, abstract = {Bioprinting offers the opportunity to fabricate precise 3D tumor models to study tumor pathophysiology and progression. However, the choice of the bioink used is important. In this study, cell behavior was studied in three mechanically and biologically different hydrogels (alginate, alginate dialdehyde crosslinked with gelatin (ADA-GEL), and thiol-modified hyaluronan (HA-SH crosslinked with PEGDA)) with cells from breast cancer (MDA-MB-231 and MCF-7) and melanoma (Mel Im and MV3), by analyzing survival, growth, and the amount of metabolically active, living cells via WST-8 labeling. Material characteristics were analyzed by dynamic mechanical analysis. Cell lines revealed significantly increased cell numbers in low-percentage alginate and HA-SH from day 1 to 14, while only Mel Im also revealed an increase in ADA-GEL. MCF-7 showed a preference for 1\% alginate. Melanoma cells tended to proliferate better in ADA-GEL and HA-SH than mammary carcinoma cells. In 1\% alginate, breast cancer cells showed equally good proliferation compared to melanoma cell lines. A smaller area was colonized in high-percentage alginate-based hydrogels. Moreover, 3\% alginate was the stiffest material, and 2.5\% ADA-GEL was the softest material. The other hydrogels were in the same range in between. Therefore, cellular responses were not only stiffness-dependent. With 1\% alginate and HA-SH, we identified matrices that enable proliferation of all tested tumor cell lines while maintaining expected tumor heterogeneity. By adapting hydrogels, differences could be accentuated. This opens up the possibility of understanding and analyzing tumor heterogeneity by biofabrication.}, language = {en} } @article{SunStarlyDalyetal.2020, author = {Sun, Wei and Starly, Binil and Daly, Andrew C and Burdick, Jason A and Groll, J{\"u}rgen and Skeldon, Gregor and Shu, Wenmiao and Sakai, Yasuyuki and Shinohara, Marie and Nishikawa, Masaki and Jang, Jinah and Cho, Dong-Woo and Nie, Minghao and Takeuchi, Shoji and Ostrovidov, Serge and Khademhosseini, Ali and Kamm, Roger D and Mironov, Vladimir and Moroni, Lorenzo and Ozbolat, Ibrahim T}, title = {The bioprinting roadmap}, series = {Biofabrication}, volume = {12}, journal = {Biofabrication}, number = {2}, doi = {10.1088/1758-5090/ab5158}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254027}, year = {2020}, abstract = {This bioprinting roadmap features salient advances in selected applications of the technique and highlights the status of current developments and challenges, as well as envisioned advances in science and technology, to address the challenges to the young and evolving technique. The topics covered in this roadmap encompass the broad spectrum of bioprinting; from cell expansion and novel bioink development to cell/stem cell printing, from organoid-based tissue organization to bioprinting of human-scale tissue structures, and from building cell/tissue/organ-on-a-chip to biomanufacturing of multicellular engineered living systems. The emerging application of printing-in-space and an overview of bioprinting technologies are also included in this roadmap. Due to the rapid pace of methodological advancements in bioprinting techniques and wide-ranging applications, the direction in which the field should advance is not immediately clear. This bioprinting roadmap addresses this unmet need by providing a comprehensive summary and recommendations useful to experienced researchers and newcomers to the field.}, language = {en} } @article{WeisShanKuhlmannetal.2018, author = {Weis, Matthias and Shan, Junwen and Kuhlmann, Matthias and Jungst, Tomasz and Tessmar, J{\"o}rg and Groll, J{\"u}rgen}, title = {Evaluation of hydrogels based on oxidized hyaluronic acid for bioprinting}, series = {Gels}, volume = {4}, journal = {Gels}, number = {4}, issn = {2310-2861}, doi = {10.3390/gels4040082}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197600}, pages = {82}, year = {2018}, abstract = {In this study, we evaluate hydrogels based on oxidized hyaluronic acid, cross-linked with adipic acid dihydrazide, for their suitability as bioinks for 3D bioprinting. Aldehyde containing hyaluronic acid (AHA) is synthesized and cross-linked via Schiff Base chemistry with bifunctional adipic acid dihydrazide (ADH) to form a mechanically stable hydrogel with good printability. Mechanical and rheological properties of the printed and casted hydrogels are tunable depending on the concentrations of AHA and ADH cross-linkers.}, language = {en} }