@article{TwisselmannPagelKuenstneretal.2021, author = {Twisselmann, Nele and Pagel, Julia and K{\"u}nstner, Axel and Weckmann, Markus and Hartz, Annika and Glaser, Kirsten and Hilgendorff, Anne and G{\"o}pel, Wolfgang and Busch, Hauke and Herting, Egbert and Weinberg, Jason B. and H{\"a}rtel, Christoph}, title = {Hyperoxia/Hypoxia Exposure Primes a Sustained Pro-Inflammatory Profile of Preterm Infant Macrophages Upon LPS Stimulation}, series = {Frontiers in Immunology}, volume = {12}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2021.762789}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250356}, year = {2021}, abstract = {Preterm infants are highly susceptible to sustained lung inflammation, which may be triggered by exposure to multiple environmental cues such as supplemental oxygen (O\(_2\)) and infections. We hypothesized that dysregulated macrophage (MФ) activation is a key feature leading to inflammation-mediated development of bronchopulmonary dysplasia (BPD) in preterm infants. Therefore, we aimed to determine age-dependent differences in immune responses of monocyte-derived MФ comparing cord blood samples derived from preterm (n=14) and term (n=19) infants as well as peripheral blood samples from healthy adults (n=17) after lipopolysaccharide (LPS) exposure. Compared to term and adult MФ, LPS-stimulated preterm MФ showed an enhanced and sustained pro-inflammatory immune response determined by transcriptome analysis, cytokine release inducing a RORC upregulation due to T cell polarization of neonatal T cells, and TLR4 surface expression. In addition, a double-hit model was developed to study pulmonary relevant exposure factors by priming MФ with hyperoxia (O\(_2\) = 65\%) or hypoxia (O\(_2\) = 3\%) followed by lipopolysaccharide (LPS, 100ng/ml). When primed by 65\% O\(_2\), subsequent LPS stimulation in preterm MФ led to an exaggerated pro-inflammatory response (e.g. increased HLA-DR expression and cytokine release) compared to LPS stimulation alone. Both, exposure to 65\% or 3\% O\(_2\) together with subsequent LPS stimulation, resulted in an exaggerated pro-inflammatory response of preterm MФ determined by transcriptome analysis. Downregulation of two major transcriptional factors, early growth response gene (Egr)-2 and growth factor independence 1 (Gfi1), were identified to play a role in the exaggerated pro-inflammatory response of preterm MФ to LPS insult after priming with 65\% or 3\% O\(_2\). Preterm MФ responses to LPS and hyperoxia/hypoxia suggest their involvement in excessive inflammation due to age-dependent differences, potentially mediated by downregulation of Egr2 and Gfi1 in the developing lung.}, language = {en} } @article{WidowskiReynaertOpheldersetal.2021, author = {Widowski, Helene and Reynaert, Niki L. and Ophelders, Daan R. M. G. and H{\"u}tten, Matthias C. and Nikkels, Peter G. J. and Severens-Rijvers, Carmen A. H. and Cleutjens, Jack P. M. and Kemp, Matthew W. and Newnham, John P. and Saito, Masatoshi and Usuda, Haruo and Payne, Matthew S. and Jobe, Alan H. and Kramer, Boris W. and Delhaas, Tammo and Wolfs, Tim G. A. M.}, title = {Sequential Exposure to Antenatal Microbial Triggers Attenuates Alveolar Growth and Pulmonary Vascular Development and Impacts Pulmonary Epithelial Stem/Progenitor Cells}, series = {Frontiers in Medicine}, volume = {8}, journal = {Frontiers in Medicine}, issn = {2296-858X}, doi = {10.3389/fmed.2021.614239}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229695}, year = {2021}, abstract = {Perinatal inflammatory stress is strongly associated with adverse pulmonary outcomes after preterm birth. Antenatal infections are an essential perinatal stress factor and contribute to preterm delivery, induction of lung inflammation and injury, pre-disposing preterm infants to bronchopulmonary dysplasia. Considering the polymicrobial nature of antenatal infection, which was reported to result in diverse effects and outcomes in preterm lungs, the aim was to examine the consequences of sequential inflammatory stimuli on endogenous epithelial stem/progenitor cells and vascular maturation, which are crucial drivers of lung development. Therefore, a translational ovine model of antenatal infection/inflammation with consecutive exposures to chronic and acute stimuli was used. Ovine fetuses were exposed intra-amniotically to Ureaplasma parvum 42 days (chronic stimulus) and/or to lipopolysaccharide 2 or 7 days (acute stimulus) prior to preterm delivery at 125 days of gestation. Pulmonary inflammation, endogenous epithelial stem cell populations, vascular modulators and morphology were investigated in preterm lungs. Pre-exposure to UP attenuated neutrophil infiltration in 7d LPS-exposed lungs and prevented reduction of SOX-9 expression and increased SP-B expression, which could indicate protective responses induced by re-exposure. Sequential exposures did not markedly impact stem/progenitors of the proximal airways (P63+ basal cells) compared to single exposure to LPS. In contrast, the alveolar size was increased solely in the UP+7d LPS group. In line, the most pronounced reduction of AEC2 and proliferating cells (Ki67+) was detected in these sequentially UP + 7d LPS-exposed lambs. A similar sensitization effect of UP pre-exposure was reflected by the vessel density and expression of vascular markers VEGFR-2 and Ang-1 that were significantly reduced after UP exposure prior to 2d LPS, when compared to UP and LPS exposure alone. Strikingly, while morphological changes of alveoli and vessels were seen after sequential microbial exposure, improved lung function was observed in UP, 7d LPS, and UP+7d LPS-exposed lambs. In conclusion, although sequential exposures did not markedly further impact epithelial stem/progenitor cell populations, re-exposure to an inflammatory stimulus resulted in disturbed alveolarization and abnormal pulmonary vascular development. Whether these negative effects on lung development can be rescued by the potentially protective responses observed, should be examined at later time points.}, language = {en} }