@incollection{DasZografakisOeljeklausetal.2023, author = {Das, Hirakjyoti and Zografakis, Alexandros and Oeljeklaus, Silke and Warscheid, Bettina}, title = {Analysis of Yeast Peroxisomes via Spatial Proteomics}, series = {Peroxisomes}, booktitle = {Peroxisomes}, edition = {accepted version}, publisher = {Springer}, doi = {10.1007/978-1-0716-3048-8_2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-327532}, publisher = {Universit{\"a}t W{\"u}rzburg}, pages = {13-31}, year = {2023}, abstract = {Peroxisomes are ubiquitous organelles with essential functions in numerous cellular processes such as lipid metabolism, detoxification of reactive oxygen species and signaling. Knowledge of the peroxisomal proteome including multi-localized proteins and, most importantly, changes of its composition induced by altering cellular conditions or impaired peroxisome biogenesis and function is of paramount importance for a holistic view on peroxisomes and their diverse functions in a cellular context. In this chapter, we provide a spatial proteomics protocol specifically tailored to the analysis of the peroxisomal proteome of baker's yeast that enables the definition of the peroxisomal proteome under distinct conditions and to monitor dynamic changes of the proteome including the relocation of individual proteins to a different cellular compartment. The protocol comprises subcellular fractionation by differential centrifugation followed by Nycodenz density gradient centrifugation of a crude peroxisomal fraction, quantitative mass spectrometric measurements of subcellular and density gradient fractions and advanced computational data analysis, resulting in the establishment of organellar maps on a global scale.}, language = {en} } @phdthesis{Goetz2018, author = {G{\"o}tz, Silvia}, title = {Zuo1 - ein neues G-Quadruplex-bindendes Protein in \(Saccharomyces\) \(cerevisiae\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152158}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {G-Quadruplex (G4)-Strukturen sind sehr stabile und polymorphe DNA und RNA Sekund{\"a}rstrukturen mit einem konservierten Guanin-reichen Sequenzmotiv (G4-Motiv). Sie bestehen aus {\"u}bereinander gestapelten planaren G-Quartetts, in denen je vier Guanine durch Wasserstoffbr{\"u}ckenbindungen zusammengehalten werden. Da G4-Motive in Eukaryoten an bestimmten Stellen im Genom angereichert vorkommen, wird angenommen, dass die Funktion von G4-Strukturen darin besteht, biologische Prozesse positiv oder negativ zu regulieren. Aufgrund der hohen thermodynamischen Stabilit{\"a}t von G4 Strukturen ist davon auszugehen, dass Proteine in die Faltung, Stabilisierung und Entfaltung dieser Nukleins{\"a}ure-Strukturen regulatorisch involviert sind. Bis heute wurden viele Proteine in der Literatur beschrieben, die G4-Strukturen entwinden k{\"o}nnen. Jedoch konnten bisher nur wenige Proteine identifiziert werden, die in vivo die Faltung f{\"o}rdern oder G4-Strukturen stabilisieren. Durch Yeast One-Hybrid (Y1H)-Screenings habe ich Zuo1 als neues G4 bindendes Protein identifiziert. In vitro Analysen best{\"a}tigten diese Interaktion und es stellte sich heraus, dass Zuo1 G4-Strukturen stabilisiert. {\"U}bereinstimmend mit den in vitro Daten konnte gezeigt werden, dass Zuo1 signifikant an G4-Motive im Genom von Saccharomyces ceresivisiae bindet. Genomweit {\"u}berlappen G4-Motive, an die Zuo1 bindet, mit Stellen, an denen die DNA Replikation zum Stillstand kommt und vermehrt DNA Sch{\"a}den vorkommen. Diese Ergebnisse legen nahe, dass Zuo1 eine Funktion w{\"a}hrend der DNA Reparatur oder in Zusammenhang mit dem Vorankommen der DNA Replikationsgabel hat, indem G4-Strukturen stabilisiert werden. Diese Hypothese wird außerdem durch genetische Experimente gest{\"u}tzt, wonach in Abwesenheit von Zuo1 die Genominstabilit{\"a}t zunimmt. Aufgrund dieser Daten war es m{\"o}glich ein Model zu entwickeln, bei dem Zuo1 w{\"a}hrend der S-Phase G4-Strukturen bindet und stabilisiert wodurch die DNA Replikation blockiert wird. Diese Interaktion findet neben Stellen schadhafter DNA statt und unterst{\"u}tzt somit DNA Reparatur-Prozesse wie beispielsweise die Nukleotidexzisionsreparatur. Als weiteres potentielles G4-bindendes Protein wurde Slx9 in Y1H-Screenings identifiziert. In vitro Experimente zeigten zwar, dass Slx9 mit h{\"o}herer Affinit{\"a}t an G4-Strukturen bindet im Vergleich zu anderen getesteten DNA Konformationen, jedoch wurde in S. cerevisiae genomweit keine signifikante Bindung an G4-Motive festgestellt.}, subject = {Saccharomyces cerevisiae}, language = {de} }