@phdthesis{Stich2020, author = {Stich, Manuel}, title = {Kompatibilit{\"a}t in der medizinischen Bildgebung: Beeinflussung von Gradientenfeldern durch das Magnetsystem und Beeinflussung elektronischer Bauteile durch ionisierende Strahlung}, doi = {10.25972/OPUS-20347}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203474}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit der Kompatibilit{\"a}t in der medizinischen Bildgebung unter zwei verschiedenen Aspekten: (A) Beeinflussung von Gradientenfeldern durch das Magnetsystem eines Magnetresonanztomographen. (B) Beeinflussung elektronischer Bauteile durch ionisierende Strahlung. Imperfektionen in der Gradientenhardware (7-13) f{\"u}hren dazu, dass nicht die ideale zeitliche Gradientenform ausgespielt wird, sondern eine verzerrte Version der Gradienten (6,14). In der nicht-kartesischen Bildgebung f{\"u}hren diese resultierenden Abweichungen in den k-Raum Trajektorien zu Bildartefakten, die sich negativ auf die Diagnosestellung auswirken k{\"o}nnen. Die linearen und zeitinvarianten Eigenschaften des Gradientensystems erm{\"o}glichen die Bestimmung der {\"U}bertragungsfunktion (GSTF) (20). Diese {\"U}bertragungsfunktion kann innerhalb der Bildrekonstruktion zur Trajektorienkorrektur verwendet werden (14,15,70). In dieser Arbeit wurden mit der Feldkamera (Skope Magnetic Resonance Technologies, Z{\"u}rich, Schweiz) (22,23) und der schichtselektiven Phantommethode (5,6) zwei etablierte GSTF-Messverfahren verglichen. Dabei wurde die Notwendigkeit einer Abtastzeitkompensation festgestellt, um die GSTF-Informationen entsprechend der gew{\"a}hlten Abtastzeit zu korrigieren (s. Abbildung 16) und die Trajektorien hinreichend zu korrigieren und damit Bildartefakte zu reduzieren. Die Langzeit- und Temperaturanalyse der GSTF zeigte f{\"u}r zwei verschiedene Siemens-Tomographen (Siemens Healthcare, Erlangen, Germany) eine Langzeit und Temperaturstabilit{\"a}t, auch bei extensiven Duty-Cyclen. Damit l{\"a}sst sich auch einfach eine Pre-emphasis-Korrektur der Gradienten realisieren, was exemplarisch mit einer Zig-Zag- und einer Spiral-Sequenz gezeigt werden konnte. Die GSTF-Pre-emphasis-Korrektur lieferte dabei {\"a}hnliche Ergebnisse wie die GSTF-Post-Processing-Technik (s. Abbildung 44 und 47). In Bezug auf die Kompatibilit{\"a}t in der medizinischen Bildgebung wurde in dieser Arbeit auch die Beeinflussung von medizinischen Implantaten durch ionisierende Strahlung untersucht. Herzschrittmacher, Kardioverter-Defibrillatoren oder andere aktive medizini- sche Implantate k{\"o}nnen in ihrer Funktion durch ionisierende Strahlung, die bei verschiedenen diagnostischen und therapeutischen Anwendungen appliziert wird, beeintr{\"a}chtigt werden (28,97,111). In dieser Studie wurden verschiedene elektronische Bauteile, wie Kondensatoren, Transistoren, Batterien und Speicherkarten in einer gewebe{\"a}quivalenten Messumgebung bestrahlt und dabei auf ihre Funktionalit{\"a}t {\"u}berpr{\"u}ft. Die Messumgebung simuliert dabei die Wechselwirkungseigenschaften von menschlichem Gewebe mit ionisierender Strahlung in einem Energiebereich von 10 keV - 6 MeV. Zudem erm{\"o}glicht sie mit der Einschubeinheit die Integration von Implantaten/elektronischen Bauteilen, sowie eine realistische Bestrahlungsplanung und Dosisverifikation (35,77). Bei den Kondensatoren zeigten sich w{\"a}hrend der Bestrahlung ein ver{\"a}ndertes Funktionsverhalten, mit signifikant abweichenden Spannungen und Zeitkonstanten gegen{\"u}ber dem unbestrahlten Zustand. Auch die Batterien haben sich w{\"a}hrend der Bestrahlung signifikant schneller entladen, als ohne Strahlungsapplikation. Nach der Bestrahlung konnten bei den untersuchten SD-Speicherkarten auch Ver{\"a}nderungen in den Speicherzellen festgestellt werden. Bei den Transistoren war aufgrund von Fehlern im Messsetup und dem Schaltungsdesign keine genauere teststatistische Auswertung m{\"o}glich. Zusammenfassend l{\"a}sst sich sagen, dass sich charakteristische Kenngr{\"o}ßen der untersuchten Bauteile bei Strahlungsapplikation signifikant ver{\"a}nderten.}, subject = {Magnetresonanztomographie}, language = {de} } @phdthesis{Weigel2019, author = {Weigel, Tobias Maximilian}, title = {Entwicklung von 3D-Herzschrittmacher-Elektroden auf Basis von Kohlenstoffnanofasern}, doi = {10.25972/OPUS-17636}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176362}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Herzschrittmachersysteme sind eine weitverbreitete M{\"o}glichkeit Herz-Kreislauf-Erkrankungen zu behandeln. Wegen der nat{\"u}rlichen Reaktion des Immunsystems auf Fremdk{\"o}rper, erfolgt aber eine fortschreitende Verkapselung der Herzschrittmacherelektrode. Die Folge ist eine ansteigende Verminderung der Stimulationseffizienz durch Erh{\"o}hung der Anregungsschwelle. Die Integration der Elektrode in das Gewebe ist dabei mangelhaft und wird bestimmt durch Implantateigenschaften wie Gr{\"o}ße, Flexibilit{\"a}t und Dimensionalit{\"a}t. Um die Integration zu verbessern, stellen dreidimensionale (3D) bzw. gewebeartige Elektroden eine Alternative zu den derzeit verwendeten planaren Metallelektroden dar. Zur Entwicklung einer leitf{\"a}higen, 3D und faserf{\"o}rmigen Elektrode wurden in dieser Arbeit Kohlenstoff-Nanofaser-Scaffolds {\"u}ber Elektrospinnen hergestellt. Durch die Modifikation des Faserger{\"u}stes mit Natriumchlorid (NaCl) w{\"a}hrend der Scaffoldherstellung, konnte das Fasernetzwerk aufgelockert und Poren generiert werden. Die Kohlenstofffaser-Elektroden zeigten einen effizienten Energie{\"u}bertrag, welcher vergleichbar mit heutigen Titannitrid (TiN) -Elektroden ist. Die Auflockerung des Fasergewebes hatte eine verbesserte Flexibilit{\"a}t des Faserscaffolds zu Folge. Neben der Flexibilit{\"a}t, konnte auch die Infiltration von Zellen in das por{\"o}se Faserscaffold erheblich verbessert werden. Dabei konnten Fibroblasten durch das gesamte Scaffold migrieren. Die Kompatibilit{\"a}t mit kardialen Zellen, die Grundvoraussetzung von Herzschrittmacherelektroden, wurde in vitro nachgewiesen. Durch die Kombination aus dem 3D-Elektrodenger{\"u}st mit einer Co-Kultur aus humanen Kardiomyozyten, mesenchymalen Stammzellen und Fibroblasten, erfolgte eine Einbettung der Elektrode in funktionelles kardiales Gewebe. Dadurch konnte ein lebender Gewebe-Elektroden-Hybrid generiert werden, welcher m{\"o}glicherweise die Elektrode vor Immunzellen in vivo abschirmen kann. Eine Zusammenf{\"u}hrung der hybriden Elektrode mit einen Tissue-Engineerten humanen kardialen Patch in vitro, f{\"u}hrte zu Bildung einer nahtlosen Elektronik-Gewebe-Schnittstelle. Die fusionierte Einheit wurde abschließend auf ihre mechanische Belastbarkeit getestet und konnte {\"u}ber einen Elektroden-Anschluss elektrisch stimuliert werden.}, subject = {Herzschrittmacher}, language = {de} }