@phdthesis{Bellwon2015, author = {Bellwon, Patricia}, title = {Kinetic assessment by in vitro approaches - A contribution to reduce animals in toxicity testing}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122693}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The adoption of directives and regulations by the EU requires the development of alternative testing strategies as opposed to animal testing for risk assessment of xenobiotics. Additionally, high attrition rates of drugs late in the discovery phase demand improvement of current test batteries applied in the preclinical phase within the pharmaceutical area. These issues were taken up by the EU founded 7th Framework Program "Predict-IV"; with the overall goal to improve the predictability of safety of an investigational product, after repeated exposure, by integration of "omics" technologies applied on well established in vitro approaches. Three major target organs for drug-induced toxicity were in focus: liver, kidney and central nervous system. To relate obtained dynamic data with the in vivo situation, kinetics of the test compounds have to be evaluated and extrapolated by physiologically based pharmacokinetic modeling. This thesis assessed in vitro kinetics of the selected test compounds (cyclosporine A, adefovir dipivoxil and cisplatinum) regarding their reliability and relevance to respective in vivo pharmacokinetics. Cells were exposed daily or every other day to the test compounds at two concentration levels (toxic and non-toxic) for up to 14 days. Concentrations of the test compounds or their major biotransformation products were determined by LC-MS/MS or ICP-MS in vehicle, media, cells and plastic adsorption samples generated at five different time-points on the first and the last treatment day. Cyclosporine A bioaccumulation was evident in primary rat hepatocytes (PRH) at the high concentration, while efficient biotransformation mediated by CYP3A4 and CYP3A5 was determined in primary human hepatocytes (PHH) and HepaRG cells. The lower biotransformation in PRH is in accordance with observation made in vivo with the rat being a poor model for CYP3A biotransformation. Further, inter-assay variability was noticed in PHH caused by biological variability in CYP3A4 and CYP3A5 activity in human donors. The inter-assay variability observed for PRH and HepaRG cells was a result of differences between vehicles regarding their cyclosporine A content. Cyclosporine A biotransformation was more prominent in HepaRG cells due to stable and high CYP3A4 and CYP3A5 activity. In addition, in vitro clearances were calculated and scaled to in vivo. All scaled in vitro clearances were overestimated (PRH: 10-fold, PHH: 2-fold, HepaRG cells: 2-fold). These results should be proven by physiologically-based pharmacokinetic modeling and additional experiments, in order to verify that these overestimations are constant for each system and subsequently can be diminished by implementation of further scaling factors. Brain cell cultures, primary neuronal culture of mouse cortex cells and primary aggregating rat brain cells, revealed fast achieved steady state levels of cyclosporine A. This indicates a chemical distribution of cyclosporine A between the aqueous and organic phases and only minor involvement of biological processes such as active transport and biotransformation. Hence, cyclosporine A uptake into cells is presumably transport mediated, supported by findings of transporter experiments performed on a parallel artificial membrane and Caco-2 cells. Plastic adsorption of cyclosporine A was significant, but different for each model, and should be considered by physiologically based pharmacokinetic modeling. Kinetics of adefovir dipivoxil highlights the limits of in vitro approaches. Active transporters are required for adefovir uptake, but were not functional in RPTECT/TERT1. Therefore, adefovir uptake was limited to passive diffusion of adefovir dipivoxil, which itself degrades time-dependently under culture conditions. Cisplatinum kinetics, studied in RPTEC/TERT1 cells, indicated intracellular enrichment of platinum, while significant bioaccumulation was not noted. This could be due to cisplatinum not reaching steady state levels within 14 days repeated exposure. As shown in vivo, active transport occurred from the basolateral to apical side, but with lower velocity. Hence, obtained data need to be modeled to estimate cellular processes, which can be scaled and compared to in vivo. Repeated daily exposure to two different drug concentrations makes it possible to account for bioaccumulation at toxic concentrations or biotransformation/extrusion at non-toxic concentrations. Potential errors leading to misinterpretation of data were reduced by analyses of the vehicles as the applied drug concentrations do not necessarily correspond to the nominal concentrations. Finally, analyses of separate compartments (medium, cells, plastic) give insights into a compound's distribution, reduce misprediction of cellular processes, e.g. biotransformation, and help to interpret kinetic data. On the other hand, the limits of in vitro approaches have also been pointed out. For correct extrapolation to in vivo, it is essential that the studied in vitro system exhibits the functionality of proteins, which play a key role in the specific drug induced toxicity. Considering the benefits and limitations, it is worth to validate this long-term treatment experimental set-up and expand it on co-culture systems and on organs-on-chips with regard to alternative toxicity testing strategies for repeated dose toxicity studies.}, subject = {Zellkultur}, language = {en} } @phdthesis{Humrich2009, author = {Humrich, Jan}, title = {G-Protein betagamma-Regulation durch Phosducin-like Proteine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40059}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Phosducin-like Protein existiert in zwei Splicevarianten: PhLPLONG (PhLPL) und PhLPSHORT (PhLPS). Sie unterscheiden sich in der L{\"a}nge ihres N-Terminus und in ihrem Expressionsmusters: Die lange Form (PhLPL) wird ubiquit{\"a}r exprimiert und bindet G-Protein-betagamma-Untereinheiten (Gbetagama), was zur Hemmung von Gbetagamma-abh{\"a}ngigen Funktionen f{\"u}hrt. Der um 83 Aminos{\"a}uren verl{\"a}ngerte N-Terminus besitzt ein hoch konserviertes Motiv, welches f{\"u}r die Gbetagamma-Bindung und Regulation von entscheidender Bedeutung ist. Im Gegensatz hierzu besitzt die kurzen Spliceform PhLPS, deren Expression in verschiedenen Gewebetypen deutlich geringer ist, diese hoch konservierte Region nicht. In der vorliegenden Arbeit wurde nun erstmals die Rolle von PhLPL und PhLPS bei der Gbetagamma-Regulation in intakten Zellen untersucht. Hierbei konnte {\"u}berraschenderweise gefunden werden, dass PhLPS der potentere und effizientere Regulator f{\"u}r Gbetagamma-abh{\"a}ngige Signale war. PhLPL hingegen schien in seiner Gbetagamma-regulierenden F{\"a}higkeit limitiert zu werden. Die Ursache dieser Limitierung von PhLPL in intakten Zellen wurde auf eine konstitutive Phosphorylierung seines verl{\"a}ngerten N-Terminus durch die ubiquit{\"a}re Casein Kinase 2 (CK2) zur{\"u}ckgef{\"u}hrt. Die verantwortlichen Phosphorylierungsstellen (S18, T19, S20) wurde identifiziert und die Mutation der CK2-Phosphorylierungsstellen (PhLPLA18-20) f{\"u}hrte zu einer Verbesserung der hemmenden Funktion von PhLPL in Zellen. In vitro-Assays zur Bindungsf{\"a}higkeit von rekombinantem PhLPL (vor und nach CK2-Phosphorylierung) zeigten allerdings: die Phosphorylierung beeinflusste die Affinit{\"a}t nicht. Eine genaue Analyse der N-terminalen Strukuren von PhLPL zeigte indes, dass die Regulationsf{\"a}higkeit von PhLPL in intakten Zellen vor allem in dem konservierten Gbetagamma-Bindungsmotiv zu suchen war. Die Mutation einer einzigen Aminos{\"a}ure (W66V) war ausreichend, um sowohl die Gbetagamma-Bindungsf{\"a}higkeit, als auch die F{\"a}higkeit zur funktionellen Hemmung in intakten Zellen zu verlieren. Was war also der Mechanismus der Hemmung von Gbetagamma durch PhLPS und die phophorylierungsdefiziente Mutante von PhLPL? Ein erster Hinweis hierauf kam von der Beobachtung, dass die Gbeta- und Ggamma-Untereinheiten in Anwesenheit von PhLPS in ihrem Proteingehalt deutlich reduziert vorlagen (wie in Western Blots gezeigt). Dieser Mechanismus schien von proteasomalen Abbauwegen abzuh{\"a}ngen (gezeigt durch Effekte des spezifischen Proteasominhibitors Lactazystin). Allerdings schien eine Stabilisierung der Gbeta- und Ggamma-Untereinheiten (durch N-terminale Fusion mit einem Protein zur vitalen Proteinf{\"a}rbung) nicht die Funktionsf{\"a}higkeit von Gbetagamma in Anwesenheit von PhLPS bewahren zu k{\"o}nnen. Ganz im Gegenteil, es wurde gezeigt, dass Gbeta und Ggamma hierbei nicht mehr zu einem funktionellen Dimer assoziierten. Dies war ein Hinweis darauf, dass m{\"o}glicherweise Proteinfaltungsmechanismen bei der Regulation essentiell sein k{\"o}nnten. Eine postulierte Rolle bei der Faltung von WD40-Repeatproteinen wie der Gbeta-Untereinheit wurde dem Chaperonin-Komplex CCT (chaperonin containing TCP) zugedacht. Folgerichtig konnte PhLPS mit seinen funktionell aktiven Dom{\"a}nen an endogenes TCP-1alpha (einer Untereinheit von CCT) binden. Ferner konnte gezeigt werden, dass die Hemmung des CCT-Komplexes durch RNA-Interferenz mit TCP-1alpha ebenso wie PhLPS zur spezifischen Reduktion von Gbetagamma f{\"u}hrte. In dieser Arbeit wurde also ein neuartiger Mechanismus der G-Protein-Regulation durch Hemmung der Proteinfaltung von Gbetagamma beschrieben. Ein Schaltmechanismus zwischen direkter Gbetagamma-Bindung (induziert durch CK2-Phosphorylierung von PhLPL) und Hemmung der Proteinfaltung von Gbetagamma (induziert durch alternatives Splicen oder durch Dephosphorylierung von PhLP) wird postuliert.}, subject = {G-Proteine}, language = {de} }