@phdthesis{BergmannBorges2023, author = {Bergmann Borges, Alyssa}, title = {The endo-lysosomal system of \(Trypanosoma\) \(brucei\): insights from a protist cell model}, doi = {10.25972/OPUS-32924}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-329248}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Most of the studies in cell biology primarily focus on models from the opisthokont group of eukaryotes. However, opisthokonts do not encompass the full diversity of eukaryotes. Thus, it is necessary to broaden the research focus to other organisms to gain a comprehensive understanding of basic cellular processes shared across the tree of life. In this sense, Trypanosoma brucei, a unicellular eukaryote, emerges as a viable alternative. The collaborative efforts in genome sequencing and protein tagging over the past two decades have significantly expanded our knowledge on this organism and have provided valuable tools to facilitate a more detailed analysis of this parasite. Nevertheless, numerous questions still remain. The survival of T. brucei within the mammalian host is intricately linked to the endo-lysosomal system, which plays a critical role in surface glycoprotein recycling, antibody clearance, and plasma membrane homeostasis. However, the dynamics of the duplication of the endo-lysosomal system during T. brucei proliferation and its potential relationship with plasma membrane growth remain poorly understood. Thus, as the primary objective, this thesis explores the endo-lysosomal system of T. brucei in the context of the cell cycle, providing insights on cell surface growth, endosome duplication, and clathrin recruitment. In addition, the study revisits ferritin endocytosis to provide quantitative data on the involvement of TbRab proteins (TbRab5A, TbRab7, and TbRab11) and the different endosomal subpopulations (early, late, and recycling endosomes, respectively) in the transport of this fluid-phase marker. Notably, while these subpopulations function as distinct compartments, different TbRabs can be found within the same region or structure, suggesting a potential physical connection between the endosomal subpopulations. The potential physical connection of endosomes is further explored within the context of the cell cycle and, finally, the duplication and morphological plasticity of the lysosome are also investigated. Overall, these findings provide insights into the dynamics of plasma membrane growth and the coordinated duplication of the endo-lysosomal system during T. brucei proliferation. The early duplication of endosomes suggests their potential involvement in plasma membrane growth, while the late duplication of the lysosome indicates a reduced role in this process. The recruitment of clathrin and TbRab GTPases to the site of endosome formation supports the assumption that the newly formed endosomal system is active during cell division and, consequently, indicates its potential role in plasma membrane homeostasis. Furthermore, considering the vast diversity within the Trypanosoma genus, which includes ~500 described species, the macroevolution of the group was investigated using the combined information of the 18S rRNA gene sequence and structure. The sequence-structure analysis of T. brucei and other 42 trypanosome species was conducted in the context of the diversity of Trypanosomatida, the order in which trypanosomes are placed. An additional analysis focused on Trypanosoma highlighted key aspects of the group's macroevolution. To explore these aspects further, additional trypanosome species were included, and the changes in the Trypanosoma tree topology were analyzed. The sequence-structure phylogeny confirmed the independent evolutionary history of the human pathogens T. brucei and Trypanosoma cruzi, while also providing insights into the evolution of the Aquatic clade, paraphyly of groups, and species classification into subgenera.}, subject = {Endocytose}, language = {en} } @phdthesis{Hartung2006, author = {Hartung, Anke}, title = {Localization of BMP receptors in distinct plasma membrane domains and its impact on BMP signaling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-18360}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Endocytosis of growth factor receptors plays an important role in the activation and propagation as well as the attenuation of signaling pathways. Its malfunctioning can cause several pathologies, e.g. by controlling the level of receptors at the cell surface. BMPs are members of the TGF-ß superfamily and are involved in the regulation of proliferation, differentiation, chemotaxis and apoptosis. BMP signaling is initiated at two types of transmembrane serine/threonine kinases, BRI and BRII. BMP receptor activation occurs upon ligand binding to preformed complexes (PFCs) or BMP2-induced signaling complexes (BISCs) composed of BRI and BRII. Binding of BMP2 to PFCs results in activation of the Smad pathway, whereas BISCs initiate the activation of Smad-independent pathways via p38 resulting in the induction of Alkaline phosphatase (ALP). BMP receptor endocytosis has not been extensively studied and the potential role of localization to different regions of the plasma membrane in determining the signaling pathways activated by PFCs and BISCs was not explored so far. In the present work, the localization of BMP receptors in distinct membrane domains and the consequential impact on BMP signaling were investigated. By separating detergent-resistant membranes (DRMs) from cell lysates and subsequent gradient ultracentrifugation, it could be demonstrated that BRI and BRII cofractionate with cav-1, the marker protein of caveolae. Moreover, both receptor types interacted with cav-1 and showed a partially colocalization with cav-1 at the plasma membrane. Although these results point to a caveolar localization, BMP receptors cofractionated also with DRMs in cells exhibiting no caveolae, suggesting an additional non-caveolar raft localization. Beyond that, BRII could also be localized to clathrin-coated pits (CCPs) by means of immuno-electronmicroscopy studies. The second part of this thesis demonstrated that both membrane regions influence BMP signaling in distinct ways. Smad1/5 was shown to be phosphorylated independently of endocytic events at the cell surface. On the one hand, disruption of DRM regions by cholesterol depletion inhibited specifically BMP2-mediated ALP production, while Smad signaling was unaffected. On the other hand, inhibition of clathrin-mediated endocytosis by specific inhibitors affected BMP2-induced Smad signaling as well as the induction of ALP, suggesting that both Smad-dependent and Smad-independent signaling pathways are required for BMP2 induced ALP production. These findings propose an important regulatory impact of different endocytic routes and membrane regions on BMP signaling as well as that a distinct membrane localization of BMP receptors account for specific signaling properties initiated at PFCs or BISCs.}, subject = {Knochen-Morphogenese-Proteine}, language = {en} } @phdthesis{Werner2014, author = {Werner, Christian}, title = {Effect of autoantibodies targeting amphiphysin or glutamate decarboxylase 65 on synaptic transmission of GABAergic neurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-105648}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The number of newly detected autoantibodies (AB) targeting synaptic proteins in neurological disorders of the central nervous system (CNS) is steadily increasing. Direct interactions of AB with their target antigens have been shown in first studies but the exact pathomecha-nisms for most of the already discovered AB are still unclear. The present study investigates pathophysiological mechanisms of AB-fractions that are associated with the enigmatic CNS disease Stiff person syndrome (SPS) and target the synaptically located proteins amphiphysin or glutamate decarboxylase 65 (GAD65). In the first part of the project, effects of AB to the presynaptic endocytic protein amphiphysin were investigated. Ultrastructural investigations of spinal cord presynaptic boutons in an es-tablished in-vivo passive-transfer model after intrathecal application of human anti-amphiphysin AB showed a defect of endocytosis. This defect was apparent at high synaptic activity and was characterized by reduction of the synaptic vesicle pool, clathrin coated vesi-cles (CCVs), and endosome like structures (ELS) in comparison to controls. Molecular inves-tigation of presynaptic boutons in cultured murine hippocampal neurons with dSTORM microscopy after pretreatment with AB to amphiphysin revealed that marker proteins involved in vesicle exocytosis (synaptobrevin 2 and synaptobrevin 7) had an altered expression in GA-BAergic presynapses. Endophilin, a direct binding partner of amphiphysin also displayed a disturbed expression pattern. Together, these results point towards an anti-amphiphysin AB-induced defective organization in GABAergic synapses and a presumably compensatory rearrangement of proteins responsible for CME. In the second part, functional consequences of SPS patient derived IgG fractions containing AB to GAD65, the rate limiting enzyme for GABA synthesis, were investigated by patch clamp electrophysiology and immunohistology. GABAergic neurotransmission at low and high activity as well as short term plasticity appeared normal but miniature synaptic potentials showed an enhanced frequency with constant amplitudes. SPS patient IgG after preabsorption of GAD65-AB using recombinant GAD65 still showed specific synaptic binding to neu-rons and brain slices supporting the hypothesis that additional, not yet characterized AB are present in patient IgG responsible for the exclusive effect on frequency of miniature potentials. In conclusion, the present thesis uncovered basal pathophysiological mechanisms underlying paraneoplastic SPS induced by AB to amphiphysin leading to disturbed presynaptic architec-ture. In idiopathic SPS, the hypothesis of a direct pathophysiological role of AB to GAD65 was not supported and additional IgG AB are suspected to induce distinct synaptic malfunction.}, subject = {Autoaggressionskrankheit}, language = {en} } @phdthesis{Dresselhaus2022, author = {Dresselhaus, Lena Katharina}, title = {Die Rolle der gp130 Endozytose f{\"u}r die Hom{\"o}ostase der B- und T-Zellen}, doi = {10.25972/OPUS-28902}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289025}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {IL-6 spielt eine wichtige Rolle bei der Immunantwort, Entz{\"u}ndung und H{\"a}matopoese. Das Glykoprotein 130 (gp130) wird ubiquit{\"a}r exprimiert und bildet als Dimer die signaltransduzierende Rezeptoreinheit f{\"u}r das IL-6 Signal. Die biologische Wirkung des IL-6 ist abhängig von der Dauer und Stärke des induzierten Signals. Die gp130 Rezeptorexpression stellt einen bedeutenden Faktor zur Beeinflussung des IL-6 Signals dar. Die im Rahmen dieser Arbeit untersuchte gp130LLAA Maus weist eine Punktmutation im gp130 Rezeptor auf, bei der das Dileucin-Motiv (L874, L785) im zytoplasmatischen Bereich von gp130 zu Dialanin verändert wurde. F{\"u}r die Endozytose ist das intrazelluläre Dileucin-Motiv erforderlich, da das Adapterprotein AP-2 an dieses Motiv bindet und dadurch den Transport mittels Clathrin-umh{\"u}llter Vesikel beg{\"u}nstigt. Die beschriebene Punktmutation hat zur Folge, dass die veränderte Form von gp130 resistent gegen{\"u}ber der Liganden- und crosstalk-vermittelten Endozytose ist. Da IL-6 generell eine wichtige Rolle bei der Differenzierung hämatopoetischer Zellen spielt, so auch bei T- und B-Zellen, wurde der Einfluss der gp130LLAA Mutation auf die Homöostase dieser lymphoiden Zellen untersucht. F{\"u}r die Versuche wurden sowohl B- und T-Zellen und jeweilige Subpopulationen aus der Milz von WT Mäusen und gp130LLAA Mäusen untersucht.}, subject = {Endocytose}, language = {de} } @phdthesis{Kuehlkamp2001, author = {K{\"u}hlkamp, Thomas}, title = {Der plasmamembran assoziierte Transportregulator RS1 bindet Ubiquitin und gelangt in den Zellkern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1179507}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Die vorliegende Arbeit liefert wichtige Erkenntnisse {\"u}ber die subzellul{\"a}re Verteilung und die Funktion des RS1-Proteins vom Schwein (pRS1), einem Regulator von Plasmamembran-transportern. Das gr{\"u}n fluoreszierende Protein (GFP) wurde mit pRS1 fusioniert und in LLC-PK1 Zellen exprimiert. Das GFP-pRS1 Fusionsprodukt (96 kD) konnte an der Plasmamembran, im Zytosol und im Zellkern entdeckt werden. Bei GFP-Fusion mit trunkierten pRS1-Proteinen zeigte sich, dass der C-Terminus die Kernlokalisierung beeinflusst. Dagegen wurde die Kernlokalisierung durch eine Trunkierung des N-Terminus nicht gest{\"o}rt. Im C-Terminus des pRS1 konnte von AS 579 bis 616 eine Ubiquitin associated domain (UBA) identifiziert werden, die auch in den anderen bisher bekannten RS1-Proteinen aus Mensch, Kaninchen und Maus konserviert vorliegt. Eine Ubiquitin-Affinit{\"a}tschromatographie zeigte, dass das pRS1-Protein Ubiquitin auf nicht kovalente Weise bindet. Nach der Trunkierung der UBA-Dom{\"a}ne war keine Wechselwirkung des pRS1-Proteins mit Ubiquitin mehr feststellbar. Ein konserviertes Di-Leucin-Endozytose-Motiv (pRS1 AS 366/67) deutet eine Funktion des pRS1-Proteins bei der Internalisierung von Plasmamembranproteinen an. Deshalb wurde das Endozytoseverhalten von pRS1 {\"u}berexprimierenden LLC-PK1 Zellen untersucht, wobei sich zeigte, dass diese Zellen eine deutlich h{\"o}here Aufnahme des Endozytosefarbstoffes RH 414 aufwiesen als Zellen, die pRS1 nicht {\"u}berexprimierten. Die in dieser Arbeit gesammelten Daten zum RS1-Protein wurden zusammen mit fr{\"u}her erhobenen Ergebnissen zum RS1-Protein im Rahmen eines Modells zusammengefasst. In diesem hypothetischen Modell wird angenommen, dass RS1 ein Adapterprotein ist, welches die ubiquitinabh{\"a}ngige Endozytose von Plasmamembrantransportern vermittelt und als Signalmolek{\"u}l in den Zellkern gelangen kann, wo es an der Transcriptionsrepression des SGLT1 beteiligt ist.}, subject = {Ubiquitin}, language = {de} } @phdthesis{Nekhoroshkova2009, author = {Nekhoroshkova, Elena}, title = {A-RAF kinase functions in ARF6 regulated endocytic membrane traffic}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-44566}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Extracellular signals are translated and amplified via cascades of serially switched protein kinases, MAP kinases (MAPKs). One of the MAP pathways, the classical RAS/RAF/MEK/ERK pathway, transduces signals from receptor tyrosine kinases and plays a central role in regulation of cell proliferation. RAF kinases (A-, B- and C-RAF) function atop of this cascade and convert signals emanating from conformational change of RAS GTPases into their kinase activity, which in turn phosphorylates their immediate substrate, MEK. Disregulated kinase activity of RAF can result in tumor formation, as documented for many types of cancer, predominantly melanomas and thyroid carcinomas (B-RAF). A-RAF is the least characterized RAF, possibly due to its low intrinsic kinase activity and comparatively mild phenotype of A-RAF knockout mice. Nevertheless, the unique phenotype of araf -/- mice, showed predominantly neurological abnormalities such as cerebellum disorders, suggesting that A-RAF participates in a specific process not complemented by activities of B- and CRAF. Here we describe the role of A-RAF in membrane trafficking and identify its function in a specific step of endocytosis. This work led to the discovery of a C-terminally truncated version of A-RAF, AR149 that strongly interfered with cell growth and polarization in yeast and with endocytosis and actin polymerization in mammalian cells. As this work was in progress two splicing isoforms of ARAF, termed DA-RAF1 and DA-RAF2 were described that act as natural inhibitors of RAS-ERK signaling during myogenic differentiation (Yokoyama et al., 2007). DA-RAF2 contains the first 153 aa of A-RAF and thus is nearly identical with AR149. AR149 localized specifically to the recycling endosomal compartments as confirmed by colocalization and coimmunoprecipitation with ARF6. Expression of AR149 interferes with recycling of endocytosed transferrin (Tfn) and with actin polymerization. The endocytic compartment, where internalized Tfn is trapped, was identified as ARF6- and RAB11- positive endocytic vesicles. We conclude that the inhibition of Tfn trafficking in the absence of A-RAF or under overexpression of AR149 occurs between tubular- and TGNassociated recycling endosomal compartments. siRNA-mediated depletion of endogenous A-RAF or inhibition of MEK by U0126 mimic the AR149 overexpression phenotype, supporting a role of ARAF regulated ERK signalling at endosomes that is controlled by AR149 and targets ARF6. Our data additionally suggest EFA6 as a partner of A-RAF during activation of ARF6. The novel findings on the A-RAF localization and the interaction with ARF6 have led to a new model of ARAF function were A-RAF via activation of ARF6 controls the recycling of endocytic vesicles.Endocytosis and rapid recycling of synaptic vesicles is critically important for the physiological function of neurons. The finding, that A-RAF regulates endocytic recycling open a new perspective for investigation of the role of A-RAF in the nervous system.}, subject = {Raf-Kinasen}, language = {en} }