@phdthesis{Brandt2002, author = {Brandt, Carsten D.}, title = {Tripyrrine - Koordinationschemie an einem Porphyrinfragment ; Kristallstrukturanalysen metallorganischer und koordinationschemischer Verbindungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-5048}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Gegenstand der vorliegenden Arbeit ist die Darstellung und Untersuchung von einfachen Triyrrinen. Dabei wurde ein besonderer Schwerpunkt auf die Entwicklung der Koordinationschemie dieses Liganden gelegt. Der zweite Teil der Arbeit besch{\"a}ftigt sich mit der Durchf{\"u}hrung von R{\"o}ntgenstrukturanalysen metallorganischer und koordinationschemischer Verbindungen. Den Hintergrund f{\"u}r den ersten Teil bilden die j{\"u}ngsten Versuche anderer Forschergruppen, mit den innerhalb der Porphyrinchemie kaum beachteten offenkettigen Tetrapyrrolen vom Bilen-Typ Ph{\"a}nomene der molekularen Erkennung, der supramolekularen Chemie und der Bioanorganik koordinationschemisch zu bearbeiten. Die Thematik ist zudem von Interesse, da anders als bei tetrapyrrolischen Liganden kaum etwas {\"u}ber das koordinationschemische Verhalten tripyrrolischer Spezies bekannt ist. Gerade das Tripyrrin erscheint hier als interessanter Modellligand, denn durch Wegnahme einer Pyrroleinheit wird eine neue, freie Koordinationsstelle geschaffen, deren Einfluß die Chemie der Tripyrrinate bestimmen sollte. In Kapitel 1 wird die Synthese der Tripyrrine aus pyrrolischen Vorstufen durch eine Kondensationsreaktion in Trifluoressigs{\"a}ure beschrieben. Der Tripyrrin-Ligand erweist sich gegen{\"u}ber Nukleophilen als h{\"o}chst reaktiv, was wahrscheinlich der Grund daf{\"u}r ist, daß dieser Ligand bislang nur in einer Arbeit beschrieben wurde. Eine Isolierung gelingt zwar nicht, wohl aber eine spektroskopische in situ-Charakterisierung mit Hilfe von NMR- und MS-Methoden. Die direkte Umsetzung der erhaltenen Rohprodukte mit {\"u}bersch{\"u}ssigen Metall(II)acetaten (M = Fe, Mn, Co, Ni, Pd, Cu, Zn) f{\"u}hrt in allen F{\"a}llen zu gr{\"u}n gef{\"a}rbten L{\"o}sungen, aus denen sich f{\"u}r M = Co, Pd, Cu und Zn Tripyrrinkomplexe mit zweiwertigem, tetrakoordinierten Metallion und Trifluoracetat als viertem Donor isolieren lassen. Strukturell werden drei unterschiedliche Geometrien beobachtet. Das bevorzugt planar koordinierende Ion Pd(II) liefert Beispiele f{\"u}r den helikalen und den pseudoplanaren Strukturtyp, da aus sterischen Gr{\"u}nden die Ausbildung einer spannungsfreien planaren Molek{\"u}ltopologie unm{\"o}glich ist. Auch Cu(II) koordiniert als Trifluoracetat in der pseudoplanaren Variante, w{\"a}hrend Zn(II) in der nicht gespannten pseudotetraedrischen Form gebunden wird. Die in den Palladium-Komplexen vorhandenen Spannungen bewirken schnelle Ligandenaustauschreaktionen mit Halogeniden und Pseudohalogeniden. Bei den Strukturen der so zug{\"a}nglichen TrpyPdX-Komplexe mit X = Cl, Br, I, N3, NCO, NCS, NO3, CN und StBu zeigt sich, daß mit zunehmender Gr{\"o}ße des anionischen Donors die pseudoplanare Geometrie gegen{\"u}ber der helikalen zunehmend beg{\"u}nstigt wird. F{\"u}r Kupfer(II)-Komplexe wird beim {\"U}bergang vom Trifluoracetat zum Chlorid ein Wechsel von der gespannten pseudoplanaren zur wenig gespannten pseudotetraedrischen Koordination beobachtet. Die sterisch gespeicherte Spannungsenergie der Tripyrrine l{\"a}ßt tetrakoordinierte Pd(II)-Komplexe wie eine gespannte Feder erscheinen und unterst{\"u}tzt den Austritt des anionischen Liganden unter Bildung eines koordinativ und elektronisch unges{\"a}ttigten 14 VE-Komplexes. Entscheidend f{\"u}r die Stabilisierung dieser Spezies ist die Verwendung des schwachkoordinierenden Tetrakis[3,5-bis(trifluormethyl)-phenyl]borats [B(Arf)4] als Anion. Der unges{\"a}ttigte Komplex erweist sich als sehr reaktiv. So koordiniert er bereitwillig an eine Vielzahl von Donoren. Die Umsetzung des Trifluoracetato-Komplexes mit einem halben {\"A}quivalent NaB(Arf)4 f{\"u}hrt zu dinuklearen Komplexen, in denen zwei kationische Tripyrrinatopalladium-Fragmente durch ein Trifluoracetat verbunden sind. Mit Trialkylphosphanen bilden sich stabile Komplexe. Eine Besonderheit stellt dabei die Reaktion mit Trimethylphosphan dar. Bei Verwendung {\"u}bersch{\"u}ssiger Mengen PMe3 beobachtet man die Bildung pentakoordinierter Komplexe. Im Gegensatz dazu f{\"u}hren die Umsetzungen mit Triethyl- und Tri-iso-propylphosphan ausschließlich zur Bildung von Monophosphankomplexen. Die ungew{\"o}hnliche Reaktivit{\"a}t des Tripyrrinatopalladium-Kations zeigt sich insbesondere bei der Umsetzung mit Diazoalkanen. So konnten erstmals Carbenpalladium-Komplexe mit nicht-heteroatomstabilisierten Carbenliganden synthetisiert werden. Kapitel 5 beschreibt einen pr{\"a}parativen Einstieg in die Chemie kationischer Kobalt- und Zinkkomplexe von Tripyrrinen. Die Reaktivit{\"a}t und Stabilit{\"a}t des Tripyrrinatokobalt-Kations, die an die Verh{\"a}ltnisse des TrpyPd-Kations erinnern, erlauben dabei die Isolierung von kationischen Phosphan- und Isonitril-Komplexen. Das entsprechende kationische Zink-Chelat konnte isoliert und NMR-spektroskopisch charakterisiert werden.}, subject = {Oligopyrrole}, language = {de} } @phdthesis{Mueck2016, author = {M{\"u}ck, Felix Maximilian}, title = {Synthese, Struktur und Eigenschaften neuer Silicium(II)- und Silicium(IV)-Komplexe mit Guanidinato-Liganden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136377}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Die vorliegende Arbeit stellt einen Beitrag zur Chemie Donor-stabilisierter Silylene mit Guanidinato-Liganden dar. Im Vordergrund standen die Synthese, Charakterisierung und Reaktivit{\"a}ts-Untersuchungen der beiden neuartigen Silicium(II)-Komplexe 23 und 24, die sterisch unterschiedlich anspruchsvolle Ligand-Systeme besitzen. Ein weiterer Schwerpunkt betrifft die Charakterisierung daraus resultierender tetra-, penta- und hexakoordinierter Silicium(II)- bzw. Silicium(IV)-Komplexe. Im Rahmen dieser Arbeit wurden die Donor-stabilisierten trikoordinierten Silylene 23 und 24, die neutralen tetrakoordinierten Silicium(II)-Komplexe 25·C4H8O und 26, die neutralen tetrakoordinierten Silicium(IV)-Komplexe 27-36, 38, 47-49 und 51, die neutralen penta-koordinierten Silicium(II)-Komplexe 39·0.5C6H5CH3, 40-42 und 46, die neutralen pentakoordinierten Silicium(IV)-Komplexe 18, 19, 37 und 56, die kationischen penta-koordinierten Silicium(IV)-Komplexe 52 und 53 sowie die neutralen hexakoordinierten Silicium(IV)-Komplexe 20, 55·0.5C6H5CH3, 57 und 58 erstmalig dargestellt. Die Charakterisierung dieser Verbindungen erfolgte durch Elementaranalysen (außer 33), NMR-Spektroskopie im Festk{\"o}rper (15N-, 29Si-, 31P- (nur 27) und 77Se-VACP/MAS-NMR (nur 32, 35, 50 und 53) sowie 11B- (nur 39·0.5C6H5CH3), 27Al- (nur 40 und 41) und 125Te-HPDec/MAS-NMR (nur 33, 36 und 51)) und in L{\"o}sung (außer 39, 40, 52 und 53; 1H-, 13C-, 27Al- (nur 41), 29Si-, 31P- (nur 27), 77Se- (nur 32, 35 und 50) und 125Te-NMR (nur 33, 36 und 51)) sowie durch Kristallstrukturanalysen. Synthese und Charakterisierung zweier neuartiger Donor-stabilisierter Mono- und Bis(guanidinato)silylene Die Donor-stabilisierten Silylene 23 und 24 wurden im Sinne einer reduktiven HCl-Eliminierung durch Umsetzung des pentakoordinierten Dichlorohydrido(guanidinato)-silicium(IV)- (18) bzw. hexakoordinierten Chlorohydridobis(guanidinato)silicium(IV)-Komplexes (20) mit Kaliumbis(trimethylsilyl)amid dargestellt. Die entsprechenden Vorstufen 18 und 20 wurden durch Umsetzung von Trichlorsilan mit einem Mol{\"a}quivalent Lithium-N,N´´-bis(2,6-diisopropylphenyl)-N´N´-dimethylguanidinat bzw. zwei Mol{\"a}quivalenten N,N´,N´,N´´-tetraisopropylguanidinat erhalten. Jegliche Versuche, das Donor-stabilisierte Silylen 22 durch Reduktion des entsprechenden pentakoordinierten Trichloro(guanidinato)-silicium(IV)-Komplexes 19 mit Alkalimetallen zu erhalten, schlugen fehl. Die Si-Koordinationspolyeder der pentakoordinierten Silicum(IV)-Komplexe 18 und 19 sind stark verzerrte trigonale Bipyramiden mit einem Chlor- und Stickstoff-Atom in den axialen Positionen. Das Si-Koordinationspolyeder von 20 ist ein stark verzerrter Oktaeder mit dem Chloro- und Hydrido-Liganden in cis-Stellung. Das Silicium-Atom der beiden Silylene 23 und 24 ist verzerrt pseudotetraedrisch von drei Stickstoff-Atomen sowie dem freien Elektronenpaar als vierten „Liganden" umgeben. Beide Verbindungen liegen sowohl im Festk{\"o}rper als auch in L{\"o}sung trikoordiniert vor (ein bidentater Guanidinato- und ein monodentater Amido-/Guanidinato-Ligand). Die Trikoordination von 24 in L{\"o}sung wurde auch durch quantenchemische Rechnungen best{\"a}tigt. Im Unterschied zu 24 ist das analoge Bis(amidinato)silylen 1 im Festk{\"o}rper trikoordiniert und in L{\"o}sung tetrakoordiniert. Reaktivit{\"a}tsstudien des Donor-stabilisierten Mono(guanidinato)silylens 23 Ausgehend von dem Silylen 23 wurden die tetrakoordinierten Silicium(II)-Komplexe 25 und 26, die tetrakoordinierten Silicium(IV)-Komplexe 27-36 und 38 sowie der pentakoordinierte Silicium(IV)-Komplex 37 dargestellt. Die Bildung dieser Produkte basiert auf Lewis-S{\"a}ure/Base- (25, 26) bzw. oxidativen Additionsreaktionen (27-38). Mit Ausnahme der Bildung von 25, 27 und 34-36 ist das typische Reaktivit{\"a}tsspektrum des Silylens 23 an zus{\"a}tzliche Reaktivit{\"a}tsfacetten gekoppelt: (i) eine {\"A}nderung des Koordinationsmodus von einem bidentat an ein Koordinationszentrum bindenden zu einem bidentat an zwei Koordinationsstellen bindenden Guanidinato-Liganden (26), (ii) eine 1,3-SiMe3-Verschiebung einer der beiden SiMe3-Gruppen des Amido-Liganden (28-33) oder (iii) eine nukleophile Reaktion einer der beiden Stickstoff-Ligand-Atome des Guanidinato-Liganden als Teil einer Umlagerungs-reaktion (38). Silylen 23 reagierte mit Zink(II)chlorid und Diethylzink unter Bildung der neutralen tetrakoordinierten Silicium(II)-Verbindungen 25 (isoliert als 25·C4H8O) bzw. 26 mit einer Silicium-Zink-Bindung. Hierbei reagiert 23 mit Zink(II)chlorid und Diethylzink im Sinne einer Lewis-S{\"a}ure/Base-Reaktion unter Bildung des Lewis-S{\"a}ure/Base-Adduktes 25 und - nach einer zus{\"a}tzlichen Umlagerung - Verbindung 26. Die Si-Koordinationspolyeder von 25·C4H8O und 26 im Kristall sind (stark) verzerrte Tetraeder, wobei im Falle von 25·C4H8O der Guanidinato-Ligand bidentat und bei 26 monodentat an das Silicium-Atom gebunden ist. Die tetrakoordinierten Silicium(IV)-Komplexe 27-36 und 38 sowie der pentakoordinierte Silicium(IV)-Komplex 37 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von 23 mit Diphenylphosphorylazid (→ 27), 2,4-Hexadiin (→ 28), 1,4-Diphenyl-butadiin (→ 29), Distickstoffmonoxid (→ 30), Diphenyldisulfid (→ 31), Diphenyldiselenid (→ 32), Diphenylditellurid (→ 33), Schwefel (→ 34), Selen (→ 35), Tellur (→ 36), Kohlenstoffdioxid (→ 37) bzw. Kohlenstoffdisulfid (→ 38) dargestellt. Verbindung 37 konnte außerdem durch Umsetzung von 30 mit Kohlenstoffdioxid synthetisiert werden. Die Reaktion von 23 mit Diphenylphosphorylazid verl{\"a}uft unter Eliminierung von Stickstoff und Bildung von Verbindung 27 mit einer Silicium-Stickstoff-Doppelbindung, wobei 27 als ein intramolekular Donor-stabilisiertes Silaimin beschrieben werden kann. Bei den Verbindungen 28 und 29 handelt es sich um Donor-stabilisierte Silaimine mit einer an das Silicium-Atom gebundenen dreifach substituierten Vinylgruppe. Es wird angenommen, dass 23 zun{\"a}chst mit einer der beiden C-C-Dreifachbindungen der Diine in einer [2+1]-Cycloaddition zu den entsprechenden Silacyclopropenen reagiert, welche danach zu 28 bzw. 29 umlagern. Hierbei wandert jeweils eine der beiden SiMe3-Gruppen in einer 1,3-Verschiebung vom Stickstoff-Atom des Amido-Liganden zum Kohlenstoff-Atom des intermedi{\"a}r gebildeten Silacyclopropenringes. Die Verbindungen 30-33 stellen die ersten thermisch stabilen Donor-stabilisierten Silaimine mit einem SiN3El-Ger{\"u}st dar (El = O, S, Se, Te). Es wird angenommen, dass bei der Reaktion von 23 mit Distickstoffmonoxid unter Eliminierung von Stickstoff, zun{\"a}chst ein tetrakoordinierter Silicium(IV)-Komplex mit einer Silicium-Sauerstoff-Doppelbindung gebildet wird, der dann im Sinne einer 1,3-SiMe3-Verschiebung vom Stickstoff- zum Sauerstoff-Atom zu Verbindung 30 umlagert. F{\"u}r die Bildung von 31-33 postuliert man zun{\"a}chst eine homolytische El-El-Bindungsaktivierung (El = S, Se, Te) der entsprechenden Diphenyldichalcogenide (Bildung von zwei Si-ElPh-Gruppen). Die anschließende 1,3-Verschiebung einer der beiden SiMe3-Gruppen des Amido-Liganden zu einem der beiden ElPh-Liganden f{\"u}hrt dann unter Abspaltung von Me3SiElPh zur Bildung von 31-33. Die Reaktion von 23 mit den elementaren Chalcogenen Schwefel, Selen und Tellur verl{\"a}uft ebenfalls im Sinne einer oxidativen Addition unter Bildung der Verbindungen 34-36 mit einer Silicium-Chalcogen-Doppelbindung. F{\"u}r die Bildung von 37 wird ein dreistufiger Mechanismus postuliert, wobei in einem ersten zweistufigen Schritt durch Reaktion von 23 mit einem Molek{\"u}l Kohlenstoffdioxid unter Eliminierung von Kohlenstoffmonoxid zun{\"a}chst Verbindung 30 als Zwischenstufe gebildet wird. Durch Addition eines zweiten Molek{\"u}ls Kohlenstoffdioxid an die Silicium-Stickstoff-Doppelbindung von 30 resultiert dann der pentakoordinierte Silicium(IV)-Komplex 37 mit einem N,O-chelatisierenden Carbamato-Liganden. Der postulierte Mechanismus wird von der Tatsache gest{\"u}tzt, dass 37 ebenfalls durch Umsetzung von 30 mit einem {\"U}berschuss an Kohlenstoffdioxid synthetisiert werden kann. Aus der Reaktion des Silylens 23 mit Kohlenstoffdisulfid resultiert die cyclische Verbindung 38. Die Si-Koordinationspolyeder von 27-36 im Kristall sind stark verzerrte Tetraeder mit einem bidentaten Guanidinato-, einem Amido- (nur 27 und 34-36) bzw. Imino-Liganden (nur 28-33) sowie einer Si-El-Einfachbindung (28, 29: El = C; 30: El = O; 31: El = S; 32: El = Se; 33: El = Te) bzw. Si-El-Doppelbindung (27: El = N, 34: El = S; 35: El = Se; 36: El = Te). Das Si-Koordinationspolyeder von 37 ist eine stark verzerrte trigonale Bipyramide, wobei sich das Sauerstoff-Atom des Carbamato-Liganden und ein Stickstoff-Atom des Guanidinato-Liganden in den axialen Positionen befinden. Das Si-Koordinationspolyeder von 38 l{\"a}sst sich als verzerrtes Tetraeder beschreiben. Reaktivit{\"a}tsstudien des Donor-stabilisierten Bis(guanidinato)silylens 24 Silylen 24 reagiert mit den Lewis-S{\"a}uren Triphenylboran, Triphenylalan und Zink(II)chlorid unter Bildung der entsprechenden pentakoordinierten Silicium(II)-Komplexe 39, 40 und 42, welche eine Silicium-Bor-, Silicium-Aluminium- bzw. Silicium-Zink-Bindung besitzen. Silylen 24 reagiert hierbei als Lewis-Base unter Ausbildung von Lewis-S{\"a}ure/Base-Addukten. Die Si-Koordinationspolyeder von 39, 40 und 42 im Kristall sind stark verzerrte trigonale Bipyramiden, wobei sich das Bor-, Aluminium- und Zink-Atom jeweils in einer {\"a}quatorialen Position befindet. Aus NMR-spektroskopischen Untersuchungen geht hervor, dass die Silicium-Zink-Verbindung 42 auch in L{\"o}sung stabil ist, w{\"a}hrend die Silicium-Bor- und Silicium-Aluminium-Verbindung 39 bzw. 40 in L{\"o}sung nicht stabil sind. Beide Komplexe dissoziieren quantitativ zu 24 und ElPh3 (El = B, Al). Die Bis(guanidinato)silicium(II)-Komplexe 39 und 40 besitzen {\"a}hnliche Strukturen wie ihre Bis(amidinato)-Analoga 3 und 41, die jeweiligen Amidinato/Guanidinato-Analoga 3/39 bzw. 41/40 unterscheiden sich aber signifikant in ihrer chemischen Stabilit{\"a}t in L{\"o}sung. Da 39 und 40 in L{\"o}sung auch bei tieferer Temperatur (T = -20 °C) dissoziiert vorliegen und die entsprechenden Amidinato-Analoga 3 und 41 selbst bei h{\"o}herer Temperatur (T = 70 °C) noch stabil sind, wird vermutet, dass das Bis(amidinato)silylen 1 bessere σ-Donor-Eigenschaften besitzt und somit eine st{\"a}rkere Lewis-Base im Vergleich zum Bis(guanidinato)silylen 24 ist. Des Weiteren reagiert Silylen 24 als ein Nukleophil mit den {\"U}bergangsmetallcarbonyl-verbindungen [M(CO)6] (M = Cr, Mo, W) und [Fe(CO)5] unter Bildung der entsprechenden tetrakoordinierten Silicium(II)-Komplexe 43-45 bzw. des pentakoordinierten Silicium(II)-Komplexes 46. Die Si-Koordinationspolyeder der spirocyclischen Silicium(II)-Verbindungen 43-45 im Kristall sind stark verzerrte Tetraeder, wobei jeweils ein Guanidinato-Ligand bidentat an das Silicium-Atom bindet und der andere Guanidinato-Ligand das Silicium- mit dem Metall-Atom verbr{\"u}ckt. Die beiden Si-Koordinationspolyeder von 46 sind stark verzerrte trigonale Bipyramiden mit dem Eisen-Atom in einer {\"a}quatorialen Position. Beim Vergleich der Bis(guanidinato)silicium(II)-Komplexe 43-46 mit den jeweiligen Amidinato-Analoga 4-7 f{\"a}llt auf, dass sich lediglich die Eisen-Verbindungen 7 und 46 entsprechen. Die Umsetzung des Bis(amidinato)silylens 1 mit [M(CO)6] (M = Cr, Mo, W) f{\"u}hrt dagegen im Sinne einer nukleophilen Substitution eines Carbonyl-Liganden zu den pentakoordinierten Silicium(II)-Komplexen 4-6, w{\"a}hrend die analoge Umsetzung des Bis(guanidinato)silylens 24 zur Substitution von zwei CO-Liganden f{\"u}hrt und sich die tetrakoordinierten Silicium(II)-Verbindungen 43-45 mit einem verbr{\"u}ckenden Guanidinato-Liganden bilden. Die tetrakoordinierten Silicium(IV)-Komplexe 47-51 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von Silylen 24 mit Azidotrimethylsilan (→ 47), Distickstoffmonoxid (→ 48), Schwefel (→ 49), Selen (→ 50) bzw. Tellur (→ 51) dargestellt. Die Bildung von 47 und 48 wird dabei von einer Stickstoff-Eliminierung begleitet. Die Si-Koordinationspolyeder von 47-51 im Kristall sind stark verzerrte Tetraeder. Der zweikernige Komplex 48 besitzt jeweils zwei Silicium-gebundene monodentate Guanidinato-Liganden sowie einen Si2O2-Ring. Die Verbindungen 47 und 49-51 sind die ersten tetrakoordinierten Bis(guanidinato)silicium(IV)-Komplexe mit einer Silicium-Stickstoff- bzw. Silicium=Chalcogen-Doppelbindung (S, Se, Te). Am Beispiel der Verbindungen 47-51 wird erneut die unterschiedliche Reaktivit{\"a}t der Amidinato/Guanidinato-analogen Silylene 1 (im Festk{\"o}rper tri- und in L{\"o}sung tetrakoordiniert) und 24 (sowohl in L{\"o}sung als auch im Festk{\"o}rper trikoordiniert) deutlich. Interessanterweise f{\"u}hren die oxidativen Additionsreaktionen der Amidinato/Guanidinato-Analoga 1 und 24 mit Azidotrimethylsilan, Distickstoffmonoxid, Schwefel, Selen und Tellur zu Produkten mit unterschiedlichen Koordinationszahlen des Silicium-Atoms. Die Verbindungen 8 und 10-12 repr{\"a}sentieren hierbei pentakoordinierte Silicium(IV)-Komplexe mit zwei bidentaten Amidinato-Liganden, wohingegen es sich bei den entsprechenden Analoga 47 und 49-51 um tetrakoordinierte Silicium(IV)-Komplexe mit einem monodentaten und einem bidentaten Guanidinato-Liganden handelt. Zugleich stellt 9 einen dinuklearen pentakoordinierten Silicium(IV)-Komplex mit jeweils einem monodentaten und einem bidentaten Amidinato-Liganden dar, w{\"a}hrend der zweikernige tetrakoordinierte Komplex 48 jeweils zwei monodentate Guanidinato-Liganden tr{\"a}gt. Ebenfalls im Sinne einer oxidativen Additionsreaktion wurden die kationischen penta-koordinierten Silicium(IV)-Komplexe 52 und 53 durch die Umsetzung von Silylen 24 mit Diphenyldisulfid (→ 52) bzw. Diphenyldiselenid (→ 53) dargestellt. Die Si-Koordinationspolyeder von 52 und 53 sind stark verzerrte trigonale Bipyramiden, wobei sich das Schwefel- bzw. Selen-Atom jeweils in einer {\"a}quatorialen Position befindet. Die Reaktion des Bis(guanidinato)silylens 24 mit Diphenyldisulfid und Diphenyldiselenid verl{\"a}uft formal unter heterolytischer Aktivierung einer Chalcogen-Chalcogen-Bindung und f{\"u}hrt zur Bildung der kationischen pentakoordinierten Silicium(IV)-Komplexe 52 und 53. Im Gegensatz dazu f{\"u}hrt die Reaktion des analogen Bis(amidinato)silylens 1 mit Diphenyldiselenid unter homolytischer Se-Se-Bindungsaktivierung zu der neutralen hexakoordinierten Silicium(IV)-Verbindung 13. Des Weiteren wurde die Reaktivit{\"a}t des Silylens 24 gegen{\"u}ber kleinen Molek{\"u}len untersucht. Die hexakoordinierten Silicium(IV)-Komplexe 55, 57 und 58 sowie der pentakoordinierte Silicium(IV)-Komplex 56 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von 24 mit einem {\"U}berschuss an Kohlenstoffdioxid (→ 55; isoliert als 55·C6H5CH3), einer {\"a}quimolaren Menge an Kohlenstoffdisulfid (→ 56), einer st{\"o}chio-metrischen Menge an Schwefeldioxid (→ 57) bzw. einem sehr großen {\"U}berschuss an Schwefeldioxid (welches auch als Solvens diente; → 58) dargestellt. Verbindung 58 wurde als ein Cokristallisat der Isomere cis-58 und trans-58 isoliert, die sich hinsichtlich der relativen Anordnung der beiden exocyclischen Sauerstoff-Atome voneinander unterscheiden. Die Si-Koordinationspolyeder von 55·C6H5CH3, 57 und 58 im Kristall sind stark verzerrte Oktaeder. Die Sauerstoff-Ligand-Atome der bidentaten O,O´-chelatisierenden Carbonato- (55), Sulfito- (57) und Dithionito-Liganden (58) stehen jeweils in cis-Position zueinander. Verbindung 58 ist die zweite strukturell charakterisierte Silicium-Verbindung mit einem bidentat O,O´-chelatisierenden Dithionito-Liganden, und die Verbindungen 55, 57 und 58 repr{\"a}sentieren sehr seltene Beispiele f{\"u}r Hauptgruppenelement-Verbindungen mit einem O,O´-chelatisierenden Carbonato-, Sulfito- und Dithionito-Liganden. Der Komplex 57 und sein Amidinato-Analogon 16 repr{\"a}sentieren zwei von drei Hauptgruppenelement-Verbindungen mit einem O,O´-chelatisierenden Sulfito-Liganden. Die Komplexe 55 und 58 stellen zusammen mit ihren Amidinato-Analoga 14 und 17 die einzigen bekannten Verbindungen mit einem O,O´-chelatisierenden Carbonato- bzw. nicht verbr{\"u}ckenden Dithionito-Liganden dar. Die Bildung von 55, 57 und 58 ist eines der wenigen Beispiele f{\"u}r Reaktionen der Amidinato/Guanidinato-analogen Silylene 1 und 24, die zu Struktur-analogen Produkten f{\"u}hren (Amidinato/Guanidinato-Analoga 14/55, 16/57 und 17/58), w{\"a}hrend in der Mehrzahl der F{\"a}lle unterschiedliche Reaktionsprofile beobachtet wurden. Das Si-Koordinationspolyeder von 56 ist eine stark verzerrte trigonale Bipyramide, mit dem Kohlenstoff-Ligand-Atom in einer {\"a}quatorialen Position. Der pentakoordinierte Silicium(IV)-Komplex 56 repr{\"a}sentiert mit seinem {\"u}ber das Kohlenstoff-Atom bindenden CS22--Liganden eine bisher einzigartige Koordinationsform in der Siliciumchemie, und die Bildung von 56 ist ein weiteres Beispiel f{\"u}r das unterschiedliche Reaktionsprofil der Amidinato/Guanidinato-analogen Silylene 1 und 24. Das Bis(amidinato)silylen 1 reagiert mit Kohlenstoffdisulfid zu dem hexakoordinierten Silicium(IV)-Komplex 15 mit einem S,S´-chelatisierenden Trithiocarbamato-Liganden und unterscheidet sich damit von seinem Guanidinato-Analogon sowohl in der Silicium-Koordinationszahl als auch in der Bindungsform.}, subject = {Siliciumkomplexe}, language = {de} } @phdthesis{Baus2016, author = {Baus, Johannes Armin}, title = {Synthese, Struktur und Eigenschaften neuer Silicium(II)- und Silicium(IV)-Komplexe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143910}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Die vorliegende Arbeit stellt einen Beitrag zur Chemie h{\"o}herkoordinierter Silicium(II) und Silicium(IV)-Verbindungen dar. Ein wesentlicher Teilaspekt der durchgef{\"u}hrten Untersuchungen betraf das Studium der Reaktivit{\"a}t der beiden donorstabilisierten Silylene 1 und 2. Im Einzelnen wurden die folgenden Teilprojekte bearbeitet: Die neutrale, hexakoordinierte Silicium(IV)-Verbindung 10 und die ionische, pentakoordinierte Silicium(IV)-Verbindung 11 wurden Umsetzung von 5 (dem Chloro-Analogon von 10) mit Me3SiBr bzw. Me3SiI in Transsilylierungsreaktionen dargestellt. Die mit 10 verwandten Verbindungen 5-9 wurden bereits fr{\"u}her synthetisiert und im Rahmen dieser Arbeit zusammen mit 10 erstmalig bez{\"u}glich ihrer Molek{\"u}ldynamik in L{\"o}sung untersucht. Die Verbindungen 5-10 zeigten in L{\"o}sung bei Raumtemperatur unterschiedlich stark ausgepr{\"a}gte Dynamikph{\"a}nomene, die mittels VT-NMR-Experimenten untersucht wurden. Die neutralen, hexakoordinierten Silicium(IV)-Verbindungen 12 und 16 wurden durch sequentielle Umsetzung der entsprechenden sekund{\"a}ren Amine Ph2NH bzw. iPr2NH mit n-Butyllithium und Kohlenstoffdisulfid sowie anschließende Umsetzung mit Tetrachlorsilan dargestellt und als die Acetonitrilsolvate 12·MeCN bzw. 16·MeCN isoliert. Es handelt sich hierbei um die ersten hexakoordinierten Silicium(IV)-Komplexe mit einem SiS4Cl2-Ger{\"u}st. Die neutrale, hexakoordinierte Silicium(IV)-Verbindung 17 mit einem SiN4Cl2-Ger{\"u}st wurde durch Umsetzung des Silylens 2 mit Chlor dargestellt. Im Gegensatz zu dieser oxidativen Addition schlug die Synthese von 17 durch Umsetzung von Tetrachlorsilan mit zwei Mol{\"a}quivalenten des entsprechenden Lithiumguanidinats [iPrNC(NiPr2)NiPr]Li fehl: Es entstand lediglich der entsprechende pentakoordinierte Mono(guanidinato)silicium(IV)-Komplex mit drei Chloroliganden. Die Umsetzung von 1,2-Diphenylethin mit dem Silylen 1 lieferte den neutralen, hexakoordinierten Silicium(IV)-Komplex 19. Der neutrale, pentakoordinierte Silicium(IV)-Komplex 20 wurde in einer Redoxreaktion durch Umsetzung des Silylens 2 mit Dimangandecacarbonyl dargestellt. Dabei wurde das Silicium(II)- zu einem Silicium(IV)-Fragment oxidiert und das Dimanganfragment unter Verlust von zwei Carbonylliganden reduziert. Die neutralen, tetrakoordinierten Silicium(II)-{\"U}bergangsmetallkomplexe 22, 23 und 24 (isoliert als 24·THF) konnten durch Umsetzung des Silylens 2 mit den entsprechenden {\"U}bergangsmetalldibromiden bzw. Nickel(II)-bromid-1,2-Dimethoxyethan dargestellt werden. Im Fall von Nickel gelang die Umsetzung mit dem freien NiBr2 nicht. Die Verbindungen 22 und 23 stellen paramagnetische Komplexe mit jeweils tetraedrisch koordinierte {\"U}bergangsmetallatomen dar. Das Nickelatom in Verbindung 24·THF ist dagegen quadratisch-planar koordiniert und damit diamagnetisch, wie es f{\"u}r d8-Metalle auch zu erwarten ist. Den drei Verbindungen 22, 23 und 24·THF gemeinsam ist der besondere Bindungsmodus einer der beiden Guanidinatoliganden, der das Siliciumatom und das {\"U}bergangsmetallatom miteinander verbr{\"u}ckt, was zur Ausbildung einer spirocyclischen Struktur f{\"u}hrt. Der neutrale, pentakoordinierte Zink-Silylen-Komplex 25 wurde in einer Lewis-S{\"a}ure/Base-Reaktion durch Umsetzung des Silylens 2 mit Zink(II)-bromid dargestellt und als das Solvat 25·0.5Et2O isoliert. Obwohl sich das Reaktionsprodukt wie auch bei den Verbindungen 22-24 als ein Lewis-S{\"a}ure/Base-Addukt verstehen l{\"a}sst, ist der Koordinationsmodus von Verbindung 25 anders: Beide Guanidinatoliganden sind bidentat an das Siliciumatom gebunden. Die neutralen Bis(silylen)palladium(0)- bzw. Bis(silylen)platin(0)-Komplexe 28 und 29 repr{\"a}sentieren die ersten homoleptischen, dikoordinierten Bis(silylen)-Komplexe dieser Metalle mit N-heterocyclischen Silylenliganden und im Fall des Platin(0)-Komplexes 29 den ersten homoleptischen, dikoordinierten Platin(0)-Silylen-Komplex {\"u}berhaupt. Verbindung 28 wurde durch Umsetzung von drei Mol{\"a}quivalenten des Silylens 2 mit dem Palladium(II)-Komplex [PdCl2(SMe2)2] dargestellt. Dabei reduziert ein Mol{\"a}quivalent des Silylens den Palladium(II)-Komplex und wird selbst zu Verbindung 17 oxidiert und die beiden verbliebenen Mol{\"a}quivalente des Silylens substituieren die Dimethylsulfidliganden am Palladiumatom. Dieselbe Synthesestrategie ließ sich jedoch nicht auf die Darstellung von Verbindung 29 {\"u}bertragen. Offenbar reicht das Reduktionspotenzial des Silylens 2 hier nicht aus. Zur Darstellung von Verbindung 29 wurde zun{\"a}chst der Platin(II)-Komplex [PtCl2(PiPr3)2] mit Natrium/Naphthalin reduziert und anschließend wurden die beiden Triisopropylphosphanliganden durch Silylenliganden substituiert.}, subject = {Siliciumverbindungen}, language = {de} } @phdthesis{Murso2004, author = {Murso, Alexander}, title = {Electronic response of phosphorus and nitrogen based ligands on metal coordination}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10397}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Phosphorus and nitrogen containing ligands were examined in terms of their coordination flexibility. Combining these donor atoms of different hardness or softness in one molecule leads to the design of polyfunctional, ambidentate ligand systems with unique properties, because the different features associated with each donor atom confer unique reactivity to their metal complexes. The phosphane Ph2P(CH2Py) (Py = 2-pyridyl) is a very versatile starting material for the preparation of highly flexible, hemilabile, ambident ligands. C-deprotonation of this phosphane yields a Janus head, responding very sensitive to the Lewis-acidity and the charge concentration of the coordinated metal, adapting its coordination mode to the electronic requirements of the cation (electronic differentiation). Thus, bidentate (P,N)-chelating, tridentate (P,N)-chelating together with C-coordination and (C,N)-coordination is observed in the different metal complexes discussed in this work. Additionally, the oxidized derivative of the abovementioned phosphane, the iminophosphorane Ph2P(CH2Py)(NSiMe3), is discussed. The C-deprotonated anion of this iminophosphorane prefers (N,N')-side arm- rather than C-coordination. The electron deficient pyridyl substituent at the C-atom leads to charge delocalization in the anionic [Ph2P(CHPy)(NSiMe3]-moiety. The bonding parameters of the iminophosphorane and all its derivatives, together with the almost fixed 15N-NMR resonances for the imino nitrogen atoms in these compounds prove that hypervalent central phosphorus is not required to describe the bonding situation in iminophosphoranes.}, subject = {Phosphane}, language = {en} } @phdthesis{Cota2010, author = {Cota, Smaranda}, title = {Contributions to the Chemistry of Higher-Coordinate Silicon: Synthesis, Structure, and Stereodynamics of New Penta- and Hexacoordinate Silicon(IV) Complexes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52312}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Im Vordergrund dieser Arbeit stand die Synthese und strukturelle Charakterisierung penta- und hexakoordinierter Silicium(IV)-Komplexe. Im Verlauf dieser Untersuchungen wurden die neutralen pentakoordinierten Silicium(IV)-Komplexe 38, 39, 43-48, 54 und 55 dargestellt. Weiterhin konnten die neutralen hexakoordinierten Silicium(IV)-Komplexe 33-36,49, 50, 52, 53, 56-62, 63, 64 und 65 synthetisiert werden. Die Charakterisierung aller Verbindungen erfolgte durch Elementaranalyse, NMR-Spektroskopie in L{\"o}sung (1H, 13C, 15N, 29Si) und im Festk{\"o}rper (13C, 15N, 29Si VACP/MAS NMR), sowie durch Kristallstrukturanalyse(außer 45, 47-49, 52, 53 und 63).}, subject = {Silicium}, language = {en} } @phdthesis{Weiss2013, author = {Weiß, J{\"o}rg}, title = {Beitr{\"a}ge zur Chemie des h{\"o}herkoordinierten Siliciums: Synthese, Struktur und Eigenschaften neuer penta- und hexakoordinierter Silicium(IV)-Komplexe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93250}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die vorliegende Dissertation stellt einen Beitrag zur Chemie des h{\"o}herkoordinierten Siliciums dar. Im Rahmen dieser Untersuchungen wurden neue neutrale penta- und hexakoordinierte Silicium(IV)-Komplexe, sowie deren ben{\"o}tigte Vorstufen dargestellt. Weiterhin wurde ein kationischer und ein zwitterionischer Silicium(IV)-Kompex synthetisiert. Die Charakterisierung dieser Verbindungen erfolgte durch Elementaranalysen, Festk{\"o}rper-NMR-Spektroskopie (13C-, 15N-, 29Si- und 77Se-VACP/MAS-NMR) und Kristallstrukturanalysen. Erg{\"a}nzend wurden einige Verbindungen durch NMR-Spektroskopie in L{\"o}sung (1H, 13C, 19F, 29Si, und 77Se) charakterisiert.}, subject = {Hypervalentes Molek{\"u}l}, language = {de} } @phdthesis{Theis2009, author = {Theis, Bastian Markus}, title = {Beitr{\"a}ge zur Chemie des h{\"o}herkoordinierten Siliciums und Germaniums: Synthese, Struktur und Eigenschaften neuer penta- und hexakoordinierter Silicium(IV)-Komplexe sowie pentakoordinierter Germanium(IV)-Komplexe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40737}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Die vorliegende Dissertation stellt einen Beitrag zur Chemie des h{\"o}herkoordinierten Siliciums dar. Im Rahmen dieser Untersuchungen wurden neuartige zwitterionische spirocyclische lambda5Si,lambda5Si'-Disilicate, zwitterionische spirocyclische lambda5Si-Silicate und neutrale pentakoordinierte Silicium(IV)-Komplexe dargestellt. Weiterhin wurden neutrale hexakoordinierte Silicium(IV)-Komplexe sowie neutrale pentakoordinierte Germanium(IV)-Komplexe synthetisiert. Die Charakterisierung dieser Verbindungen erfolgte durch Elementaranalysen, Festk{\"o}rper-NMR-Spektroskopie (13C-, 15N-, 29Si- und 77Se-VACP/MAS-NMR) und Kristallstrukturanalysen. Erg{\"a}nzend wurden einige Verbindungen durch NMR-Spektroskopie in L{\"o}sung (1H, 13C, 19F, 29Si, 31P und 77Se) charakterisiert.}, subject = {Silicium}, language = {de} } @phdthesis{Seiler2005, author = {Seiler, Oliver}, title = {Beitr{\"a}ge zur Chemie des h{\"o}herkoordinierten Siliciums und Germaniums : Synthese, Struktur und Eigenschaften dianionischer lambda-6-Si-Silicate und lambda-6-Ge-Germanate sowie neutraler penta- und hexakoordinierter Silicium-Verbindungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14784}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Im Rahmen der vorliegenden Arbeit wurden Beitr{\"a}ge zur Chemie des h{\"o}herkoordinierten Siliciums und Germaniums geleistet. Neben der Synthese zwitterionischer lambda-5-Si-Silicate sowie hexakoordinierter Silicium- und Germanium-Verbindungen mit SiO6- oder GeO6-Ger{\"u}st stellt die Synthese neutraler h{\"o}herkoordinierter Silicium-Verbindungen ausgehend von Tetra(cyanato-N)silan und Tetra(thiocyanato-N)silan sowie deren umfassende Charakterisierung einen Schwerpunkt dieser Arbeit dar.}, subject = {Silicium}, language = {de} } @phdthesis{Hanft2023, author = {Hanft, Anna}, title = {Aminotroponiminate: Koordinationschemie, Reaktivit{\"a}t und Redoxverhalten von Alkalimetall-, Silber-, und Bismut-Komplexen}, doi = {10.25972/OPUS-23204}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232049}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Die Koordinationschemie, die Reaktivit{\"a}t und das Redoxverhalten von Alkalimetall-, Silber- und Bismut-Aminotroponiminat(ATI)-Komplexen wurde untersucht}, subject = {Reaktivit{\"a}t}, language = {de} }