@phdthesis{Mueller2012, author = {M{\"u}ller, Andreas}, title = {Towards functional oxide heterostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72478}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Oxide heterostructures attract a lot of attention as they display a vast range of physical phenomena like conductivity, magnetism, or even superconductivity. In most cases, these effects are caused by electron correlations and are therefore interesting for studying fundamental physics, but also in view of future applications. This thesis deals with the growth and characterization of several prototypical oxide heterostructures. Fe3O4 is highly ranked as a possible spin electrode in the field of spintronics. A suitable semiconductor for spin injection in combination with Fe3O4 is ZnO due to its oxide character and a sufficiently long spin coherence length. Fe3O4 has been grown successfully on ZnO using pulsed laser deposition and molecular beam epitaxy by choosing the oxygen partial pressure adequately. Here, a pressure variation during growth reduces an FeO-like interface layer. Fe3O4 films grow in an island-like growth mode and are structurally nearly fully relaxed, exhibiting the same lattice constants as the bulk materials. Despite the presence of a slight oxygen off-stoichiometry, indications of the Verwey transition hint at high-quality film properties. The overall magnetization of the films is reduced compared to bulk Fe3O4 and a slow magnetization behavior is observed, most probably due to defects like anti-phase boundaries originating from the initial island growth. LaAlO3/SrTiO3 heterostructures exhibit a conducting interface above a critical film thickness, which is most likely explained by an electronic reconstruction. In the corresponding model, the potential built-up owing to the polar LaAlO3 overlayer is compensated by a charge transfer from the film surface to the interface. The properties of these heterostructures strongly depend on the growth parameters. It is shown for the first time, that it is mainly the total pressure which determines the macroscopic sample properties, while it is the oxygen partial pressure which controls the amount of charge carriers near the interface. Oxygen-vacancy-mediated conductivity is found for too low oxygen pressures. A too high total pressure, however, destroys interface conductivity, most probably due to a change of the growth kinetics. Post-oxidation leads to a metastable state removing the arbitrariness in controlling the electronic interface properties by the oxygen pressure during growth. LaVO3/SrTiO3 heterostructures exhibit similar behavior compared to LaAlO3/SrTiO3 when it comes to a thickness-dependent metal-insulator transition. But in contrast to LaAlO3, LaVO3 is a Mott insulator exhibiting strong electron correlations. Films have been grown by pulsed laser deposition. Layer-by-layer growth and a phase-pure pervoskite lattice structure is observed, indicating good structural quality of the film and the interface. An electron-rich layer is found near the interface on the LaVO3 side for conducting LaVO3/SrTiO3. This could be explained by an electronic reconstruction within the film. The electrostatic doping results in a band-filling-controlled metal-insulator transition without suffering from chemical impurities, which is unavoidable in conventional doping experiments.}, subject = {Oxide}, language = {en} } @phdthesis{Ames2015, author = {Ames, Christopher}, title = {Molecular Beam Epitaxy of 2D and 3D HgTe, a Topological Insulator}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151136}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In the present thesis the MBE growth and sample characterization of HgTe structures is investigated and discussed. Due to the first experimental discovery of the quantum Spin Hall effect (QSHE) in HgTe quantum wells, this material system attains a huge interest in the spintronics society. Because of the long history of growing Hg-based heterostructures here at the Experimentelle Physik III in W{\"u}rzburg, there are very good requirements to analyze this material system more precisely and in new directions. Since in former days only doped HgTe quantum wells were grown, this thesis deals with the MBE growth in the (001) direction of undoped HgTe quantum wells, surface located quantum wells and three dimensional bulk layers. All Hg-based layers were grown on CdTe substrates which generate strain in the layer stack and provide therefore new physical effects. In the same time, the (001) CdTe growth was investigated on n-doped (001) GaAs:Si because the Japanese supplier of CdTe substrates had a supply bottleneck due to the Tohoku earthquake and its aftermath in 2011. After a short introduction of the material system, the experimental techniques were demonstrated and explained explicitly. After that, the experimental part of this thesis is displayed. So, the investigation of the (001) CdTe growth on (001) GaAs:Si is discussed in chapter 4. Firstly, the surface preparation of GaAs:Si by oxide desorption is explored and analyzed. Here, rapid thermal desorption of the GaAs oxide with following cool down in Zn atmosphere provides the best results for the CdTe due to small holes at the surface, while e.g. an atomic flat GaAs buffer deteriorates the CdTe growth quality. The following ZnTe layer supplies the (001) growth direction of the CdTe and exhibits best end results of the CdTe for 30 seconds growth time at a flux ratio of Zn/Te ~ 1/1.2. Without this ZnTe layer, CdTe will grow in the (111) direction. However, the main investigation is here the optimization of the MBE growth of CdTe. The substrate temperature, Cd/Te flux ratio and the growth time has to be adjusted systematically. Therefore, a complex growth process is developed and established. This optimized CdTe growth process results in a RMS roughness of around 2.5 nm and a FWHM value of the HRXRD w-scan of 150 arcsec. Compared to the literature, there is no lower FWHM value traceable for this growth direction. Furthermore, etch pit density measurements show that the surface crystallinity is matchable with the commercial CdTe substrates (around 1x10^4 cm^(-2)). However, this whole process is not completely perfect and offers still room for improvements. The growth of undoped HgTe quantum wells was also a new direction in research in contrast to the previous n-doped grown HgTe quantum wells. Here in chapter 5, the goal of very low carrier densities was achieved and therefore it is now possible to do transport experiments in the n - and p - region by tuning the gate voltage. To achieve this high sample quality, very precise growth of symmetric HgTe QWs and their HRXRD characterization is examined. Here, the quantum well thickness can now determined accurate to under 0.3 nm. Furthermore, the transport analysis of different quantum well thicknesses shows that the carrier density and mobility increase with rising HgTe layer thickness. However, it is found out that the band gap of the HgTe QW closes indirectly at a thickness of 11.6 nm. This is caused by the tensile strained growth on CdTe substrates. Moreover, surface quantum wells are studied. These quantum wells exhibit no or a very thin HgCdTe cap. Though, oxidization and contamination of the surface reduces here the carrier mobility immensely and a HgCdTe layer of around 5 nm provides the pleasing results for transport experiments with superconductors connected to the topological insulator [119]. A completely new achievement is the realization of MBE growth of HgTe quantum wells on CdTe/GaAs:Si substrates. This is attended by the optimization of the CdTe growth on GaAs:Si. It exposes that HgTe quantum wells grown in-situ on optimized CdTe/GaAs:Si show very nice transport data with clear Hall plateaus, SdH oscillations, low carrier densities and carrier mobilities up to 500 000 cm^2/Vs. Furthermore, a new oxide etching process is developed and analyzed which should serve as an alternative to the standard HCl process which generates volcano defects at some time. However, during the testing time the result does not differ in Nomarski, HRXRD, AFM and transport measurements. Here, long-time tests or etching and mounting in nitrogen atmosphere may provide new elaborate results. The main focus of this thesis is on the MBE growth and standard characterization of HgTe bulk layers and is discussed in chapter 6. Due to the tensile strained growth on lattice mismatched CdTe, HgTe bulk opens up a band gap of around 22 meV at the G-point and exhibits therefore its topological surface states. The analysis of surface condition, roughness, crystalline quality, carrier density and mobility via Nomarski, AFM, XPS, HRXRD and transport measurements is therefore included in this work. Layer thickness dependence of carrier density and mobility is identified for bulk layer grown directly on CdTe substrates. So, there is no clear correlation visible between HgTe layer thickness and carrier density or mobility. So, the carrier density is almost constant around 1x10^11 cm^(-2) at 0 V gate voltage. The carrier mobility of these bulk samples however scatters between 5 000 and 60 000 cm^2/Vs almost randomly. Further experiments should be made for a clearer understanding and therefore the avoidance of unusable bad samples.But, other topological insulator materials show much higher carrier densities and lower mobility values. For example, Bi2Se3 exhibits just density values around 1019 cm^(-2) and mobility values clearly below 5000 cm2/Vs. The carrier density however depends much on lithography and surface treatment after growth. Furthermore, the relaxation behavior and critical thickness of HgTe grown on CdTe is determined and is in very good agreement with theoretical prediction (d_c = 155 nm). The embedding of the HgTe bulk layer between HgCdTe layers created a further huge improvement. Similar to the quantum well structures the carrier mobility increases immensely while the carrier density levels at around 1x10^11 cm^(-2) at 0 V gate voltage as well. Additionally, the relaxation behavior and critical thickness of these barrier layers has to be determined. HgCdTe grown on commercial CdTe shows a behavior as predicted except the critical thickness which is slightly higher than expected (d_c = 850 nm). Otherwise, the relaxation of HgCdTe grown on CdTe/GaAs:Si occurs in two parts. The layer is fully strained up to 250 nm. Between 250 nm and 725 nm the HgCdTe film starts to relax randomly up to 10 \%. The relaxation behavior for thicknesses larger than 725 nm occurs than linearly to the inverse layer thickness. A explanation is given due to rough interface conditions and crystalline defects of the CdTe/GaAs:Si compared to the commercial CdTe substrate. HRXRD and AFM data support this statement. Another point is that the HgCdTe barriers protect the active HgTe layer and because of the high carrier mobilities the Hall measurements provide new transport data which have to be interpreted more in detail in the future. In addition, HgTe bulk samples show very interesting transport data by gating the sample from the top and the back. It is now possible to manipulate the carrier densities of the top and bottom surface states almost separately. The back gate consisting of the n-doped GaAs substrate and the thick insulating CdTe buffer can tune the carrier density for Delta(n) ~ 3x10^11 cm^(-2). This is sufficient to tune the Fermi energy from the p-type into the n-type region [138]. In this thesis it is shown that strained HgTe bulk layers exhibit superior transport data by embedding between HgCdTe barrier layers. The n-doped GaAs can here serve as a back gate. Furthermore, MBE growth of high crystalline, undoped HgTe quantum wells shows also new and extended transport output. Finally, it is notable that due to the investigated CdTe growth on GaAs the Hg-based heterostructure MBE growth is partially independent from commercial suppliers.}, subject = {Quecksilbertellurid}, language = {en} } @phdthesis{Kessel2016, author = {Kessel, Maximilian}, title = {HgTe shells on CdTe nanowires: A low-dimensional topological insulator from crystal growth to quantum transport}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149069}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {A novel growth method has been developed, allowing for the growth of strained HgTe shells on CdTe nanowires (NWs). The growth of CdTe-HgTe core-shell NWs required high attention in controlling basic parameters like substrate temperature and the intensity of supplied material fluxes. The difficulties in finding optimized growth conditions have been successfully overcome in this work. We found the lateral redistribution of liquid growth seeds with a ZnTe growth start to be crucial to trigger vertical CdTe NW growth. Single crystalline zinc blende CdTe NWs grew, oriented along [111]B. The substrate temperature was the most critical parameter to achieve straight and long wires. In order to adjust it, the growth was monitored by reflection high-energy electron diffraction, which was used for fine tuning of the temperature over time in each growth run individually. For optimized growth conditions, a periodic diffraction pattern allowed for the detailed analysis of atomic arrangement on the surfaces and in the bulk. The ability to do so reflected the high crystal quality and ensemble uniformity of our CdTe NWs. The NW sides were formed by twelve stable, low-index crystalline facets. We observed two types stepped and polar sides, separated by in total six flat and non-polar facets. The high crystalline quality of the cores allowed to grow epitaxial HgTe shells around. We reported on two different heterostructure geometries. In the first one, the CdTe NWs exhibit a closed HgTe shell, while for the second one, the CdTe NWs are overgrown mainly on one side. Scanning electron microscopy and scanning transmission electron microscopy confirmed, that many of the core-shell NWs are single crystalline zinc blende and have a high uniformity. The symmetry of the zinc blende unit cell was reduced by residual lattice strain. We used high-resolution X-ray diffraction to reveal the strain level caused by the small lattice mismatch in the heterostructures. Shear strain has been induced by the stepped hetero-interface, thereby stretching the lattice of the HgTe shell by 0.06 \% along a direction oriented with an angle of 35 ° to the interface. The different heterostructures obtained, were the base for further investigation of quasi-one-dimensional crystallites of HgTe. We therefore developed methods to reliably manipulate, align, localize and contact individual NWs, in order to characterize the charge transport in our samples. Bare CdTe cores were insulating, while the HgTe shells were conducting. At low temperature we found the mean free path of charge carriers to be smaller, but the phase coherence length to be larger than the sample size of several hundred nanometers. We observed universal conductance fluctuations and therefore drew the conclusion, that the trajectories of charge carriers are defined by elastic backscattering at randomly distributed scattering sites. When contacted with superconducting leads, we saw induced superconductivity, multiple Andreev reflections and the associated excess current. Thus, we achieved HgTe/superconductor interfaces with high interfacial transparency. In addition, we reported on the appearance of peaks in differential resistance at Delta/e for HgTe-NW/superconductor and 2*Delta/e for superconductor/HgTe-NW/superconductor junctions, which is possibly related to unconventional pairing at the HgTe/superconductor interface. We noticed that the great advantage of our self-organized growth is the possibility to employ the metallic droplet, formerly seeding the NW growth, as a superconducting contact. The insulating wire cores with a metallic droplet at the tip have been overgrown with HgTe in a fully in-situ process. A very high interface quality was achieved in this case.}, subject = {Quecksilbertellurid}, language = {en} } @phdthesis{Grabs2005, author = {Grabs, Peter}, title = {Herstellung von Bauelementen f{\"u}r Spininjektionsexperimente mit semimagnetischen Halbleitern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-16048}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Im Rahmen dieser Arbeit sollten Halbleiterheterostrukturen mit semimagnetischen II-VI-Halbleitern hergestellt werden, mit denen Experimente zum Nachweis und der Erforschung der Spininjektion in Halbleiter durchgef{\"u}hrt werden. Hierzu sollten optische und Transportexperimente dienen. Zur Polarisation der Elektronenspins werden semimagnetische II-VI-Halbleiter verwendet, bei denen in einem von außen angelegten magnetischen Feld bei tiefen Temperaturen durch den riesigen Zeemaneffekt die Spinentartung der Energieb{\"a}nder aufgehoben ist. Da diese Aufspaltung sehr viel gr{\"o}ßer als die thermische Energie der Ladungstr{\"a}ger ist, sind diese nahezu vollst{\"a}ndig spinpolarisiert. F{\"u}r die vorgestellten Experimente wurden (Be,Zn,Mn)Se und (Cd,Mn)Se als Injektormaterialien verwendet. Durch die Verwendung von (Be,Zn,Mn)Se als Injektor konnte die Spinjektion in eine GaAs-Leuchtdiode nachgewiesen werden. Hierzu wurde der Grad der zirkularen Polarisation des von der Leuchtdiode emittierten Lichts gemessen, welches ein direktes Maß f{\"u}r die Spinpolarisation der injizierten Elektronen ist. Durch diverse Referenzmessungen konnte die Polarisation des Lichts eindeutig der Spininjektion in die Leuchtdiode zugeordnet werden. So konnten eventuell denkbare andere Ursachen, wie ein zirkularer Dichroismus des Injektormaterials oder die Geometrie des Experiments ausgeschlossen werden. Um die physikalischen Prozesse in der Spin-LED n{\"a}her zu untersuchen, wurde eine Vielzahl von Experimenten durchgef{\"u}hrt. So wurde unter anderem die Abh{\"a}ngigkeit der Effizienz der Spininjektion von der Dicke der semimagnetischen (Be,Zn,Mn)Se-Schicht erforscht. Hieraus wurde eine magnetfeldabh{\"a}ngige Spin-Flip-L{\"a}nge im semimagnetischen Halbleiter ermittelt, die kleiner als 20 nm ist. Im Zuge dieser Experimente wurde auch die magnetooptischen Eigenschaften dieser hochdotierten (Be,Zn,Mn)Se-Schichten untersucht. Die große Zeemanaufspaltung bleibt zwar erhalten, wird allerdings insbesondere unter Stromfluß durch eine isolierte Aufheizung der Manganionen in der Schicht reduziert. Die Spin-LEDs wurden auf eine eventuelle Eignung zur Detektion der Spininjektion in Seitenemission, wie es f{\"u}r Experimente mit anderen spinpolarisierenden Materialien n{\"o}tig ist, getestet. Obwohl die Effizienz der Spininjektion in diesen LEDs nachweislich sehr hoch ist, konnte in Seitenemission keine Polarisation des emittierten Lichts nachgewiesen werden. In dieser Konfiguration sind (Al,Ga)As-LEDs als Detektor also nicht zu verwenden. Der Nachweis der Injektion spinpolarisierter Elektronen in einen Halbleiter sollte auch in Transportexperimenten erfolgen. Hierf{\"u}r wurden (Be,Zn,Mn)Se/(Be,Zn)Se-Heterostrukturen hergestellt, die wie erwartet einen deutlichen positiven Magnetowiderstand zeigen, der nicht auf die verwendeten Materialien oder die Geometrie der Proben zur{\"u}ckzuf{\"u}hren ist. Der beobachtete Effekt scheint durch ein Zusammenspiel des semimagnetischen Halbleiters mit dem Metall-Halbleiter-Kontakt aufzutreten. Aus diesen Experimenten konnte eine Absch{\"a}tzung der Spin-Flip-L{\"a}nge in hochdotierten ZnSe-Schichten getroffen werden. Sie liegt zwischen 10 und 100 nm. Weiterhin sollten Spininjektionsexperimente an InAs durchgef{\"u}hrt werden. Zur Polarisation der Elektronenspins in diesen Experimenten sollte als semimagnetischer Halbleiter (Cd,Mn)Se verwendet werden, da es gitterangepasst zu InAs gewachsen werden kann. Anders als bei (Be,Zn,Mn)Se konnte jedoch auf nahezu keine Erfahrungen auf dem Gebiet der (Cd,Mn)Se-Epitaxie zur{\"u}ckgegriffen werden. Durch die Verwendung eines ZnTe-Puffers ist es gelungen (Cd,Mn)Se-Schichten auf InAs in sehr hoher struktureller Qualit{\"a}t herzustellen. Die Untersuchung der magnetooptischen Eigenschaften dieser Schichten best{\"a}tigte die Eignung von (Cd,Mn)Se als Injektor f{\"u}r die geplanten Spininjektionsexperimente. F{\"u}r die elektrische Charakterisierung ist es n{\"o}tig, (Cd,Mn)Se auf einem elektrisch isolierenden GaAs-Substrat mit einer (Al,Ga)Sb-Pufferschicht zu epitaxieren. Das monokristalline Wachstum von (Cd,Mn)Se-Schichten hierauf wurde nur durch die Verwendung eines ZnTe-Puffers m{\"o}glich, der bei sehr niedrigen Substrattemperaturen im ALE-Modus gewachsen wird. Insbesondere die Dotierbarkeit der (Cd,Mn)Se-Schichten ist f{\"u}r die Spininjektionsexperimente wichtig. Es zeigte sich, dass sich die maximal erreichbare n-Dotierung mit Iod durch den Einbau von Mangan drastisch reduziert. Trotzdem ist es gelungen, (Cd,Mn)Se -Schichten herzustellen, die einen negativen Magnetowiderstand zeigen, was eine Voraussetzung f{\"u}r Spininjektionsexperimente ist. F{\"u}r Transportexperimente sollen die spinpolarisierten Elektronen direkt in ein zweidimensionales Elektronengas injiziert werden. Hierf{\"u}r wurden Heterostrukturen mit einem InAs-Quantentrog, in dem sich ein solches 2DEG ausbildet, hergestellt und in Hall-Messungen charakterisiert. F{\"u}r die Realisierung dieser Experimente wurde ein Konzept erstellt und erste Versuche zu dessen Umsetzung durchgef{\"u}hrt. Ein zu l{\"o}sendes Problem bleibt hierbei die Diffusion auf der freigelegten InAs-Oberfl{\"a}che bei den f{\"u}r das (Cd,Mn)Se-Wachstum n{\"o}tigen Substrattemperaturen. Leuchtdioden mit einem InAs-Quantentrog wurden f{\"u}r den Nachweis der Spininjektion in InAs auf optischem Wege hergestellt. F{\"u}r die Realisierung einer solchen Leuchtdiode war es n{\"o}tig, auf ein asymmetrisches Designs mit einer n-Barriere aus (Cd,Mn)Se und einer p-Barriere aus (Al,Ga)(Sb,As) zur{\"u}ckzugreifen. Es wurden sowohl magnetische als auch unmagnetische Referenzproben hergestellt und vermessen. Die Ergebnisse deuten auf einen experimentellen Nachweis der Spininjektion hin.}, subject = {Semimagnetischer Halbleiter}, language = {de} } @phdthesis{Schumacher2003, author = {Schumacher, Claus}, title = {Herstellung und Charakterisierung von Nanostrukturen auf der Basis von II-VI-Materialien mittels der Schattenmaskentechnologie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8754}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Warum eigentlich Schattenmasken als neues alternatives Verfahren zur lateralen Strukturierung? Alle bislang {\"u}blichen Verfahren zur Herstellung lateral begrenzter Halbleiter-Kristalle strukturieren die zuvor epitaktisch fl{\"a}chig aufgewachsenen Schichten nachtr{\"a}glich. Hierdurch k{\"o}nnen Probleme entstehen. Etwa erzeugen nach einem nasschemischen {\"A}tzprozess freistehende Quantentr{\"o}ge im Randbereich Oberfl{\"a}chenzust{\"a}nde, die zu nicht strahlender Rekombination f{\"u}hren k{\"o}nnen und daher die Lichtausbeute reduzieren. Der Prozess des erneuten {\"U}berwachsens solcher nachtr{\"a}glich ge{\"a}tzter Strukturen ist bislang noch nicht reproduzierbar. Weitere alternative Techniken, wie das Wachstum selbstorganisierter Quantenpunkte oder das it in-situ Spalten, bieten entweder noch keine befriedigende Kontrollm{\"o}glichkeit der Strukturgr{\"o}ße oder sind f{\"u}r eine industrielle Anwendung nur wenig praktikabel. Deshalb richtete sich der Blick auf das aus der III-V-Epitaxie bekannte Schattenmasken-Verfahren zur Herstellung makroskopischer sogenannter ,,nipi-Strukturen''. Diese zeigen den interessanten Effekt, dass sich die durch eine Schattenmaske wachsende Struktur in Wachstumsrichtung w{\"a}hrend des Wachstums von selbst zuspitzt. Die Gr{\"o}ße der Masken-Apertur kann dadurch in einer Gr{\"o}ßenordnung bleiben, wie sie durch ein ultra-violett optisch lithographisches Verfahren hergestellt werden kann. Durch die Maske w{\"a}chst dennoch, unterst{\"u}tzt von Schatten- und Selbstorganisationseffekten, ein Halbleiter-Kristall, der an seiner Spitze die Ausdehnung einer Nanostruktur hat. Im Rahmen dieser Arbeit gelang es erstmals mittels der Schattenmaskentechnologie eine ZnSe-Draht-Struktur herzustellen, deren Ausdehnung an der Spitze nur noch 25~nm betr{\"a}gt. Da dieses Verfahren erstmals zur Herstellung von II-VI-Halbleiter-Schichten etabliert wurde, konnte auf keinerlei Vorarbeiten zur{\"u}ckgegriffen werden. Vor der Herstellung geeigneter Schattenmasken mussten zun{\"a}chst geeignete Belichtungs-Masken f{\"u}r die optische Lithographie entworfen werden, bevor die {\"A}tztechniken zur Herstellung der Schattenmasken selbst optimiert werden konnten. Am Ende der Schattenmaskenentwicklung stand ein Verfahren zur Pr{\"a}paration einer verl{\"a}sslichen Startoberfl{\"a}che f{\"u}r die anschließende II-VI-Epitaxie, ohne die ein reproduzierbares Wachstum durch die Schattenmaske nicht m{\"o}glich ist. Nachdem die technologische Seite abgearbeitet war, mussten anhand geeigneter Epitaxieexperimente die Einfl{\"u}sse durch die ge{\"a}nderten Wachstumsbedingungen erforscht werden. Insbesondere spielen beim Wachstum durch Schattenmasken Oberfl{\"a}cheneffekte wie Diffusion oder die Orientierung der Masken-Apertur bzgl. der Kristallrichtung eine wesentliche Rolle. F{\"u}r die in dieser Arbeit verwendete Geometrie des Wachstums (Gruppe-II- und Gruppe-VI-Spezies werden aus bzgl. der Masken-Apertur spiegelbildlichen Raumwinkelbereichen angeboten) wurde herausgefunden, dass die Masken{\"o}ffnung entlang der [1-10]-Kristallrichtung orientiert sein sollte. Entlang dieser Richtung sind die Se-Dimere einer Se-reich rekonstruierten Oberfl{\"a}che orientiert und somit verl{\"a}uft die Vorzugsdiffusionsrichtung senkrecht zum Draht. Hierdurch k{\"o}nnen diffusionsgest{\"u}tzt sch{\"a}rfer definierte Flanken des Drahtes wachsen, als bei einer um 90° gedrehten Geometrie. Eigentlich soll nicht nur eine bin{\"a}re Drahtstruktur entstehen, sondern es soll zum Beispiel ein ZnCdSe-Quantentrog in einen Draht aus einem geeigneten Barriere-Material eingebettet werden. Bei diesen Versuchen stellte sich anhand von Tieftemperatur-PL- und charakteristischen R{\"o}ntgenphotonen-Spektren heraus, dass Cadmium in einem epitaktisch gewachsenen Draht st{\"a}rker als andere Spezies auf der Wachstumsoberfl{\"a}che diffundiert. Eine kontrollierte Deposition eines ZnCdSe-Quantentroges ist nicht m{\"o}glich. Um Diffusionseffekte zu vermeiden kann statt eines tern{\"a}ren Troges ein bin{\"a}rer in eine nun quatern{\"a}re Barriere eingebettet werden. Dieser Ansatz wird bereits in einer parallel zu dieser Arbeit begonnenen Dissertation erfolgreich verfolgt. Bei der Etablierung eines neuen Verfahrens zur Herstellung von Halbleiter-Kristallen m{\"u}ssen auch Aussagen {\"u}ber die strukturellen Eigenschaften der gewachsenen Strukturen getroffen werden. Hierzu wurden die mittels eines ,,Lift-Off''-Prozesses nun freistehenden Drahtstrukturen einer R{\"o}ntgenstrukturanalyse unterzogen. Die reziproken Gitterkarten zeigen bei senkrechter Orientierung der Beugungsebene relativ zum Draht, dass der Schichtreflex nicht auf der Relaxationsgeraden liegt. Bei einer rein plastischen Relaxation eines Halbleiter-Kristalls m{\"u}sste dies jedoch f{\"u}r beide Orientierungen der Beugungsebene (senkrecht und parallel zum Draht) der Fall sein. Der Schichtreflex ist in Richtung des Substratreflexes verschoben. Der Netzebenenabstand ist somit also verkleinert. Eine m{\"o}gliche Erkl{\"a}rung hierf{\"u}r ist die zylinderf{\"o}rmige ,,Verbiegung'' der Atomebenen im Realraum und somit der Netzebenen im reziproken Raum. Die {\"U}berlegungen f{\"u}hren somit auf eine zus{\"a}tzlich elastische anstelle auschließlich plastischen Relaxation des Kristalls. Um eine solche These erh{\"a}rten zu k{\"o}nnen wurde auf der Basis der aus den REM- und AFM-Bildern ausgewerteten Geometrie der Drahtstrukturen ein atomares Modell eines verspannten Kristalls erstellt. Mittels eines Monte-Carlo-Algorithmus' kann dieses Modell seine eingepr{\"a}gte Verspannungsenergie elastisch abbauen. Die Fouriertransformierte des Realraumbildes des elastisch relaxierten Drahtes l{\"a}sst sich direkt mit den reziproken Gitterkarten vergleichen. Mittels dieser Simulation konnte die vertikale Verschiebung des Schichtreflexes unmittelbar den zylindrisch ,,verbogenen'' Kristallebenen zugeordnet werden. Ferner erm{\"o}glichen die Simulationen erstmalig die qualitative Interpretation der Beugungsmessungen an den Schattenmasken selbst. Die im Rahmen der Dissertation von H.R.~Ress vorgenommenen Beugungsmessungen an den Schattenmasken zeigen neben der vertikalen Verschiebung des AlGaAs-Schichtreflexes charakteristische diffuse Streifen um den Schichtreflex, die bislang unverstanden waren. Die Simulationen zeigen, dass diese Streifen erst bei der elastischen Relaxation des Drahtes durch die konvexe W{\"o}lbung der Drahtflanke entstehen. Diese diffusen Streifen lassen sich in den in dieser Arbeit gewachsenen Dr{\"a}hten aus II-VI-Halbleitern nicht unmittelbar nachweisen. Da die Schattenmasken bedingt durch das Herstellungsverfahren eine Rauigkeit der Schattenkanten von bis zu 150~nm aufweisen sind auch die Flanken der durch die Masken gewachsenen Strukturen stark aufgeraut. Deshalb streuen die den Draht begrenzenden Fassetten nicht koh{\"a}rent und bieten entsprechend keine definierte Abbruchbedingung der Fouriertransformation.}, subject = {Zwei-Sechs-Halbleiter}, language = {de} } @phdthesis{Bach2006, author = {Bach, Peter}, title = {Growth and characterization of NiMnSb-based heterostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17771}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {In this work heterostructures based on the half-Heusler alloy NiMnSb have been fabricated and characterized. NiMnSb is a member of the half-metallic ferromagnets, which exhibit an electron spin-polarization of 100\% at the Fermi-level. For fabrication of these structures InP substrates with surface orientations of (001),(111)A and (111)B have been used. The small lattice mismatch of NiMnSb to InP allows for pseudomorphic layers, the (111) orientation additionally makes the formation of a half-metallic interface possible. For the growth on InP(001), procedures for the substrate preparation, growth of the lattice matched (In,Ga)As buffer layer and of the NiMnSb layer have been developed. The effect of flux-ratios and substrate temperatures on the MBE growth of the buffer as well as of the NiMnSb layer have been investigated and the optimum conditions have been pointed out. NiMnSb grows in the layer-by-layer Frank-van der Merwe growth mode, which can be seen by the intensity oscillations of the RHEED specular spot during growth. RHEED and LEED measurements show a flat surface and a well-defined surface reconstruction. High resolution x-ray measurements support this statement, additionally they show a high crystalline quality. Measurements of the lateral and the vertical lattice constant of NiMnSb films on (001) oriented substrates show that layers above a thickness of 20nm exhibit a pseudomorphic as well as a relaxed part in the same layer. Whereas layers around 40nm show partly relaxed partitions, these partitions are totally relaxed for layers above 100nm. However, even these layers still have a pseudomorphic part. Depth-dependent x-ray diffraction experiments prove that the relaxed part of the samples is always on top of the pseudomorphic part. The formation and propagation of defects in these layers has been investigated by TEM. The defects nucleate early during growth and spread until they form a defect network at a thickness of about 40nm. These defects are not typical misfit dislocations but rather antiphase boundaries which evolve in the Mn/Sb sublattice of the NiMnSb system. Dependent on the thickness of the NiMnSb films different magnetic anisotropies can be found. For layers up to 15nm and above 25nm a clear uniaxial anisotropy can be determined, while the layers with thicknesses in between show a fourfold anisotropy. Notably the easy axis for the thin layers is perpendicular to the easy axis observed for the thick layers. Thin NiMnSb layers show a very good magnetic homogeneity, as can be seen by the very small FMR linewidth of 20Oe at 24GHz. However, the increase of the linewidth with increasing thickness shows that the extrinsic damping gets larger for thicker samples which is a clear indication for magnetic inhomogeneities introduced by crystalline defects. Also, the magnetic moment of thick NiMnSb is reduced compared to the theoretically expected value. If a antiferromagnetic material is deposited on top of the NiMnSb, a clear exchange biasing of the NiMnSb layer can be observed. In a further step the epitaxial layers of the semiconductor ZnTe have been grown on these NiMnSb layers, which enables the fabrication of NiMnSb/ZnTe/NiMnSb TMR structures. These heterostructures are single crystalline and exhibit a low surface and interface roughness as measured by x-ray reflectivity. Magnetic measurements of the hysteresis curves prove that both NiMnSb layers in these heterostructures can switch separately, which is a necessary requirement for TMR applications. If a NiMn antiferromagnet is deposited on top of this structure, the upper NiMnSb layer is exchange biased by the antiferromagnet, while the lower one is left unaffected. Furthermore the growth of NiMnSb on (111) oriented substrates has been investigated. For these experiments, InP substrates with a surface orientation of (111)A and (111)B were used, which were miscut by 1 to 2° from the exact orientation to allow for smoother surfaces during growth. Both the (In, Ga)As buffer as well as the NiMnSb layer show well defined surface reconstructions during growth. X-ray diffraction experiments prove the single crystalline structure of the samples. However, neither for the growth on (111)A nor on (111)B a perfectly smooth surface could be obtained during growth, which can be attributed to the formation of pyramid-like facets evolving as a result of the atomic configuration at the surface. A similar relaxation behavior as NiMnSb layers on (001) oriented InP could not be observed. RHEED and x-ray diffraction measurements show that above a thickness of about 10nm the NiMnSb layer begins to relax, but remnants of pseudomorphic parts could not be found. Magnetic measurements show that the misorientation of the substrate crystal has a strong influence on the magnetic anisotropies of NiMnSb(111) samples. In all cases a uniaxial anisotropy could be observed. The easy axis is always aligned parallel to the direction of the miscut of the substrate.}, subject = {Nickelverbindungen}, language = {en} } @phdthesis{Lochner2011, author = {Lochner, Florian}, title = {Epitaxial growth and characterization of NiMnSb layers for novel spintronic devices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72276}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {In dieser Dissertation wurde das epitaktische Wachstum und die Charakterisierung des halb-metallischen Ferromagneten NiMnSb vorgestellt. NiMnSb kristallisiert in der C1b Kristallstruktur, welche {\"a}hnlich der Zinkblendestruktur von h{\"a}ufig verwendeten III-V Halbleitern ist. Eine besondere Eigenschaft von NiMnSb ist die theoretische 100\% Spin-polarisation an der Fermikante, die es zu einem perfekten Kandidaten f{\"u}r Spintronikexperimente macht. Eine weitere große Rolle f{\"u}r diese Arbeit spielten die magnetischen Eigenschaften von NiMnSb, insbesondere die niedrige magnetische D{\"a}mpfung der abgeschiedenen Schichten. Alle gewachsenen Schichten wurden mit der MBE-Technik hergestellt. Die Schichtstapel f{\"u}r alle unterschiedlichen Experimente und Anwendungen wurden auf InP Substrate in (001) oder (111)B Orientierung abgeschieden. Vor der NiMnSb Schicht wurde eine undotierte (In,Ga)As Pufferschicht gewachsen. F{\"u}r einige Proben auf InP(111)B wurde zus{\"a}tzlich eine Si-dotierte (In,Ga)As-Schicht auf die undotierte (In,Ga)As-Schicht gewachsen. Die Dotierungskonzentration der n-dotierenten Schicht wurde per ETCH-CV bestimmt. Alle Schichten wurden auf strukturelle Eigenschaften und die NiMnSb-Schichten zus{\"a}tzlich auf magnetische Eigenschaften untersucht. F{\"u}r die strukturellen Untersuchungen wurde die in-situ Technik RHEED und das ex-situ Werkzeug HRXRD verwendet. Auf beiden Orientierungen zeigten die RHEED-Beobachtungen eine gute Qualit{\"a}t der gewachsenen Puffer- und halb-metallischen Ferromagnetschichten. Dieses Ergebnis wurde durch die HRXRD-Messung best{\"a}rkt. Es konnte die vertikale Gitterkonstante bestimmt werden. Der erhaltene Wert von NiMnSb auf InP(001) a(NiMnSb_vertikal) = 5.925 {\AA} ist in guter {\"U}bereinstimmung mit dem Literaturwert a(NiMnSb_Lit) = 5.903 {\AA}[Cas55]. F{\"u}r NiMnSb auf InP(111)B wurde eine vertikale Gitterkonstante von a(NiMnSb_vertikal) = 6.017 {\AA} bestimmt. Die horizontale Gitterkonstante des Puffers und des halb-metallischen Ferromagneten konnte in guter {\"U}bereinstimmung mit der Substratgitterkonstante bestimmt werden. Allerdings ist dieses Ergebnis ausschließlich bis zu einer Schichtdicke von ≈40nm f{\"u}r NiMnSb g{\"u}ltig. Um diese maximale Schichtdicke zu erh{\"o}hen, wurden NiMnSb auf InP(001) Substrate gewachsen und mit einer Ti/Au-Schicht als Schutz versehen. Mit diesen Proben wurden reziproke Gitterkarten des (533) Reflex mit GIXRD am Synchrotron BW2 des HASYLAB gemessen [Kum07]. Es hat sich gezeigt, dass sich die kritische Schichtdicke mehr als verdopppeln l{\"a}sst, wenn eine Ti/Au- Schicht direkt nach dem Wachstum von NiMnSb abgeschieden wird, ohne das Ultrahochvakuum (UHV) zu verlassen. Die magnetischen Eigenschaften wurden mit FMR Experimenten und SQUID bestimmt. Der gemessene magnetische D{\"a}mpfungsparameter α einer 40nm dicken NiMnSb Schicht auf InP(001) wurde zu 3.19e-3 entlang [1-10] bestimmt. Die resultierende Linienbreite von unseren Schichten auf InP(001) ist mehr als 4.88 mal kleiner als bei [Hei04] gemessen. Ein weiteres Ergebnis ist die Richtungsabh{\"a}ngigkeit der D{\"a}mpfung. Es wurde gemessen, dass die D{\"a}mpfung sich um mehr als 42\% {\"a}ndert, wenn das angelegte Feld um 45° von [1-10] nach [100] gedreht wird. Mit SQUID messten wir die S{\"a}ttigungsmagnetisierung von einer 40nm dicken NiMnSb-Schicht zu 4µB. NiMnSb-Schichten auf InP(111)B Substrate wurden ebenfalls mit FMR untersucht, mit einem {\"u}berraschenden Ergebnis. Diese Schichten zeigten nicht nur eine Abnahme im Anisotropiefeld mit ansteigender Schichtdicke, sondern auch ein uniaxiales Anisotropieverhalten. Dieses Verhalten kann mit Defekten in diesen Proben erkl{\"a}rt werden. Mit einem Rasterkraftmikroskop (AFM) wurden dreieckige Defekte gemessen. Diese Defekte haben ihren Ursprung in der Pufferschicht und beeinflussen die magnetischen Eigenschaften. Ein weiterer Teil dieser Arbeit widmete sich dem Verhalten von NiMnSb bei Temperaturen um die 80K. In unserer Probe konnte ein Phasen{\"u}bergang in den Messdaten des normalen Hall Koeffizienten, anomalen Hall-Term und Leitungswiderstand nicht beobachtet werden. Der letzte Teil dieser Arbeit behandelt verschiedene Spintronikanwendungen, welche aus unseren NiMnSb-Schichten gebaut wurden. In einer ersten Anwendung agiert die Magnetisierung auf einen Strom I. Die so genannte GMR-Anwendung besteht aus InP:S(001)- 180nm undotierten (In,Ga)As - 40nm NiMnSb - 10nm Cu - 6nm NiFe - 10nm Ru in CPP Geomtrie . Wir erhielten ein MR-Verh{\"a}ltnis von 3.4\%. In einer zweiten Anwendung agiert der Strom I auf die Magnetisierung und nutzt dabei das Ph{\"a}nomen des Spin-Drehmomentes aus. Dieser so genannte Spin Torque Oscillator (STO) emittiert Frequenzen im GHz Bereich (13.94GHz - 14.1GHz). Die letzte hergestellte Anwendung basiert auf dem magnetischen Wirbelph{\"a}nomen. F{\"u}r das Umschalten der Kernpolarit{\"a}t sind die gyrotropischen Frequenzen f + = 254MHz, f - = 217MHz und ein totales, statisches magnetisches Feld von nur mµ0H = 65mT n{\"o}tig. Die Umkehreffizienz wurde besser als 99\% bestimmt.}, subject = {Nickelverbindungen}, language = {en} }