@phdthesis{Rest2015, author = {Rest, Christina}, title = {Self-assembly of amphiphilic oligo(phenylene ethynylene)-based (bi)pyridine ligands and their Pt(II) and Pd(II) complexes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133248}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The presented work in the field of supramolecular chemistry describes the synthesis and detailed investigation of (bi)pyridine-based oligo(phenylene ethynylene) (OPE) amphiphiles, decorated with terminal glycol chains. The metal-ligating property of these molecules could be exploited to coordinate to Pd(II) and Pt(II) metal ions, respectively, resulting in the creation of novel metallosupramolecular π-amphiphiles of square-planar geometry. The focus of the presented studies is on the self-assembly behaviour of the OPE ligands and their corresponding metal complexes in polar and aqueous environment. In this way, the underlying aggregation mechanism (isodesmic or cooperative) is revealed and the influence of various factors on the self-assembly process in supramolecular systems is elucidated. In this regard, the effect of the molecular design of the ligand, the coordination to a metal centre as well as the surrounding medium, the pH value and temperature is investigated.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Schott2015, author = {Schott, Marco}, title = {Neuartige Elektrodenmaterialien auf der Basis von Metallo-Polyelektrolyten und Hybridpolymeren f{\"u}r elektrochrome Fenster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116904}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Im Rahmen der vorliegenden Arbeit wurde die Herstellung von elektrochromen (Nanokomposit-) Materialien auf der Basis des Metall-Komplexes Fe(ph-tpy)2 und eines Metallo-supramolekularen Polyelektrolyten (Fe-MEPE) f{\"u}r den Einsatz in glas- und kunstoffbasierten elektrochromen Elementen (ECDs) mit elektrisch schaltbarer Transmission untersucht. Mittels Layer-by-Layer (LbL)- und Tauchbeschichtungsverfahren ist es m{\"o}glich, homogene Fe-MEPE-Filme auf transparenten, leitf{\"a}higen Oxidsubstraten (TCO) herzustellen. Die eingesetzten TCO-Substrate besitzen eine hohe Transparenz im sichtbaren Bereich und einen geringen Fl{\"a}chenwiderstand, so dass in elektrochromen Elementen (ECDs) hohe Transmissionswerte im Hellzustand und kurze Schaltzeiten erzielt werden k{\"o}nnen. Als Referenzmaterial wurde Fe(ph-tpy)2 untersucht, um die Vorteile von polymeren Strukturen gegen{\"u}ber mononuklearen Metall-Komplexen aufzuzeigen. Die rosa-violetten Fe(ph-tpy)2-Komplexe eignen sich nicht f{\"u}r die Herstellung elektrochromer D{\"u}nnschichten, aufgrund der schlechten Benetzbarkeit und Haftung auf TCO-Substraten. Dagegen besitzen Fe-MEPE hervorragende elektrochrome Eigenschaften. Fe-MEPE ist gut l{\"o}slich in Alkoholen und Etheralkoholen, wobei in MeOH der gr{\"o}ßte Extinktionskoeffizient εmax (46.890 M-1•cm-1) erreicht wird. Ein Vergleich zwischen LbL-assemblierten und tauchbeschichteten Fe-MEPE-Schichten zeigt, dass die elektrochromen Filme mittels Tauchbeschichtung schneller hergestellt werden k{\"o}nnen und geringere Schaltzeiten haben. Die h{\"o}chste optische Qualit{\"a}t wird mit einem L{\"o}sungsmittelgemisch aus EtOH, MeOH und 2-Butoxyethanol erreicht. Die Schichten weisen eine homogene, defektfreie Oberfl{\"a}che mit hoher Transparenz auf. Fe-MEPE-Schichten sind bis etwa 100 °C stabil. Bei weiterer Erh{\"o}hung der Temperatur f{\"a}rben sie sich irreversibel gr{\"u}n f{\"a}rben und lassen sich nicht mehr schalten. Die Gr{\"u}nf{\"a}rbung ist durch eine {\"A}nderung der Molekularstruktur der Fe-MEPE-Polymere bedingt. Ab einer Temperatur von etwa 100 °C findet ein {\"U}bergang von der Niedrigtemperatur- zu einer Hochtemperaturphase statt. Der axiale Fe-N-Abstand verringert sich dabei von 1,95 auf 1,88 {\AA}, der {\"a}quatoriale Fe-N-Abstand vergr{\"o}ßert sich von 1,98 auf 2,01 {\AA}. Elektrochemische Untersuchungen zeigen, dass Fe-MEPE-Schichten bei Spannungen im Bereich von 3,85 bis 4,10 V vs. Li/Li+ in fl{\"u}ssigen organischen Elektrolyten von blau nach farblos schalten durch Oxidation von Fe(II) nach Fe(III) und bei etwa 4,00 bis 3,75 V vs. Li/Li+ f{\"a}rben sich die Fe-MEPE-Schichten reduktiv wieder blau. Es k{\"o}nnen hohe Coulomb-Effizienzen von etwa 94 \%, F{\"a}rbeeffizienzen η > 500 cm2•C-1 bei 592 nm und visuelle Transmissionsunterschiede Δτv von bis zu 58 \% erreicht werden. Jedoch l{\"o}sen sich die Fe-MEPE-Schichten ohne Hybridpolymer (ORMOCER®) als Bindemittel in einigen fl{\"u}ssigen und gelf{\"o}rmigen Elektrolyten nach einigen tausend Schaltzyklen teilweise ab. Um die Haftung und die thermische Stabilit{\"a}t der elektrochromen Schichten zu verbessern, werden Fe(ph-tpy)2 und Fe-MEPE in ein ORMOCER® eingebettet. Hierf{\"u}r ist ein hydroxy-funktionalisiertes ORMOCER® mit einem hohen OH/Si-Verh{\"a}ltnis (1,75 : 1) am besten geeignet. Im Gegensatz zu den rosa-violetten ORMOCER®/Fe(ph-tpy)2-Schichten weisen die blau gef{\"a}rbten ORMOCER®/Fe-MEPE-Schichten eine bessere Filmbildung sowie eine h{\"o}here Homogenit{\"a}t und Transparenz auf. Mit einem L{\"o}sungsmittelgemisch aus EtOH, MeOH und 2-Butoxyethanol k{\"o}nnen mittels Tauchbeschichtung homogene ORMOCER®/Fe-MEPE-Filme mit geringem Haze (< 0,5 \%) bis zu einer Probengr{\"o}ße von 20 x 30 cm2 hergestellt werden. Die elektrochromen Eigenschaften bleiben bis zu einem ORMOCER®/Fe-MEPE-Verh{\"a}ltnis von 40:1 und Schichtdicken von etwa 10 µm erhalten, wobei die Schaltgeschwindigkeit mit zunehmendem ORMOCER®-Anteil abnimmt. Als optimal erweist sich ein ORMOCER®/Fe-MEPE-Verh{\"a}ltnis von 3:1, bei dem die Schichten hervorragende optische und elektrochrome Eigenschaften sowie eine gute thermische und mechanische Best{\"a}ndigkeit besitzen. Die thermische Stabilit{\"a}t der ORMOCER®/Fe-MEPE-Filme kann so auf {\"u}ber 100 °C erh{\"o}ht werden; die blaue Farbe und die elektrochromen Eigenschaften der Schichten bleibt auch nach kurzzeitigem Tempern bei 200 °C erhalten. Im Vergleich zu Fe-MEPE-Schichten ohne ORMOCER® ist die Intensit{\"a}t der Metal-to-Ligand Charge Transfer (MLCT)-Bande bei etwa 593 nm und die Ladungsdichte der ORMOCER®/Fe-MEPE-Schichten bei gleicher Schichtdicke geringer, was zur Folge hat, dass auch die F{\"a}rbeeffizienz η der Kompositmaterialien geringer ist. Allerdings konnte der visuelle Transmissionsunterschied Δτv auf 62 \% gesteigert werden und die ORMOCER®/Fe-MEPE-Schichten besitzen dar{\"u}berhinaus eine hohe Zyklenstabilit{\"a}t {\"u}ber mehrere tausend Schaltzyklen ohne signifikanten Ladungsverlust. Weiterhin weist in ORMOCER® eingebettetes Fe-MEPE polyelektrochrome Eigenschaften auf; bei negativen Spannungen (< -1,9 V vs. Fc/Fc+) f{\"a}rben sich die ORMOCER®/Fe-MEPE-Schichten gr{\"u}n und weisen eine starke Absorption im NIR-Bereich auf. Im Hinblick auf eine Verwendung von Fe-MEPE bzw. ORMOCER®/Fe-MEPE als Arbeitselektrode (WE) in ECDs sind verschiedene Materialien, wie z. B. ITO, V2O5, TiVOx und Preußisch Blau (PB), f{\"u}r den Einsatz als Gegenelektrode (CE) denkbar. Vor allem PB ist als Material f{\"u}r die CE interessant, da es komplement{\"a}r zu Fe-MEPE von blau nach farblos schaltet. Dadurch kann in einem ECD mit einer Fe-MEPE-basierten WE der visuelle Transmissionsunterschied ∆τv im Vergleich zu ECDs mit einer V2O5- oder TiVOx-Gegenelektrode, die keinen farblosen Redoxzustand besitzen, erh{\"o}ht werden. Demnach stellen Fe-MEPE bzw. ORMOCER®/Fe-MEPE vielversprechende elektrochrome Materialien f{\"u}r den Einsatz in schaltbaren Fenstern (Smart Windows) dar, vor allem wegen hervorragender Beschichtungseigenschaften, hoher F{\"a}rbeeffizienz und kurzen Schaltzeiten.}, subject = {Supramolekulare Chemie}, language = {de} } @phdthesis{Geist2015, author = {Geist, Matthias}, title = {Koordinationspolymere auf der Basis von Terpyridin und Dipyridyltriazin: Synthese und Anwendung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114715}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Der erste Teil der Arbeit untersucht den Einsatzes von 4,6-Di-(pyrid-2´-yl)-1,3,5-triazin als Baustein f{\"u}r Metallo-supramolekulare Polyelektrolyte. Die daf{\"u}r n{\"o}tigen ditopen Liganden werden mittels Stille Kreuzkupplungen dargestellt. Die Absorptions- und Fluoreszenzeigenschaften k{\"o}nnen durch den Einbau von Oligothiophenen eingestellt werden. Im zweiten Teil der Arbeit werden die elektrorheologischen Eigenschaften von Metallo-supramolekularen Polyelektrolyten untersucht. Zu diesem Zweck werden die Koordinationspolymere in das Schichtsilikat Montmorillonit interkaliert. Die Interkalation wird mittels verschiedener analytischer Methoden wie Pulverdiffraktometrie, Thermoanalyse oder Infrarotspektroskopie untersucht. Die entstehenden Nanokomposite zeigen einen elektrorheologischen Effekt bei einer geringen Stromdichte.}, subject = {Nanokomposit}, language = {de} }