@phdthesis{Stojanovic2010, author = {Stojanovic, Jelena}, title = {Cortical functional activations in musical talents and nontalents in visuomotor and auditory tasks: implications of the effect of practice on neuroplasticity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51898}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Neuroplasticity is a term indicating structural and functional changes in the brain through the lifespan. In the present study, differences in the functional cortical activations between the musical talents and non-talents were investigated after a short-term practice of the visuomotor and auditory tasks. Visuomotor task consisted of the finger tapping sequences, while auditory task consisted of passive listening to the classical music excerpts. Non-talents were divided in two groups: trained non-talents who practiced the task prior to scanning and untrained non-talents who did not practice the task. Functional activations were obtained by the functional magnetic resonance imaging (fMRI) in a 1.5T Scanner. It was hypothesized that talents would exhibit different functional activations from non-talents in both tasks as a result of the long-term music practice, which would account for the brain plasticity. Decreased activation of the same areas in talents in respect to the non-talents as well as the activation of different areas between the talents and non-talents was hypothesized. In addition due to a plethora of previous studies showing increased activations in the primary motor cortex (M1) in musicians, as well as left inferior frontal gyrus (lIFG), increased activation of the M1 and lIFG in talents were hypothesized. Behavioral results did not reveal differences in performance among the three groups of subjects (talents, non-talents who practiced the task, and non-talents who did not practice the task). The main findings from imaging results of the visuomotor task confirmed the hypothesis of the increased activation in the M1 in talents. Region of interest analyses of the lIFG revealed the highest activation in the untrained non-talents, lower activation in talents, and least activation in the trained non-talents. Posthoc imaging analyses revealed higher activations in the cerebella of subjects who practiced the visuomotor task. For the auditory task, the effect of auditory practice was observed in the right inferior frontal gyrus (rIFG). These results should be interpreted with caution due to the absence of behavioral differences among the groups.}, subject = {Neuronale Plastizit{\"a}t}, language = {en} }