@phdthesis{Roedel2019, author = {R{\"o}del, Michaela}, title = {Development of Dual Setting Cement Systems as Composite Biomaterials with Ductile Properties}, doi = {10.25972/OPUS-18277}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-182776}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Synthetic bone replacement materials have their application in non-load bearing defects with the function of (re-)construction or substitution of bone. This tissue itself represents a biological composite material based on mineralized collagen fibrils and combines the mechanical strength of the mineral with the ductility of the organic matrix. By mimicking these outstanding properties with polymer-cement-composites, an imitation of bone is feasible. A promising approach for such replacement materials are dual setting systems, which are generated by dissolution-precipitation reaction with cement setting in parallel to polymerization and gelation of the organic phase forming a coherent hydrogel network. Hereby, the high brittleness of the pure inorganic network was shifted to a more ductile and elastic behavior. The aim of this thesis was focused on the development of different dual setting systems to modify pure calcium phosphate cements' (CPCs') mechanical performance by incorporation of a hydrogel matrix. A dual setting system based on hydroxyapatite (HA) and cross-linked 2-hydroxyethyl methacrylate (HEMA) via radical polymerization was advanced by homogenous incorporation of a degradable cross-linker composed of poly(ethylene glycol) (PEG) as well as poly(lactic acid) (PLA) with reactive terminal methacrylate functionalities (PEG-PLLA-DMA). By integration of this high molecular weight structure in the HEMA-hydrogel network, a significant increase in energy absorption (toughness) under 4-point bending testing was observed. An addition of only 10 wt\% hydrogel precursor (referred to the liquid phase) resulted in a duplication of stress over a period of 8 days. Additionally, the calculated elasticity was positively affected and up to six times higher compared to pure HA. With a constantly applied force during compressive strength testing, a deformation and thus strain levels of about 10 \% were reached immediately after preparation. For higher degradability, the system was modified in a second approach regarding organic as well as inorganic phase. The latter component was changed by brushite forming cement that is resorbable in vivo due to solubility processes. This CPC was combined with a hydrogel based on PEG-PLLA-DMA and other dimethacrylated PEGs with different molecular weights and concentrations. Hereby, new reaction conditions were created including a shift to acidic conditions. On this ground, the challenge was to find a new radical initiator system. Suitable candidates were ascorbic acid and hydrogen peroxide. that started the polymerization and successful gelation in this environment. These highly flexible dual set composites showed a very high ductility with an overall low strength compared to HA-based models. After removal of the applied force during compressive strength testing, a complete shape recovery was observed for the samples containing the highest polymeric amount (50 wt\%) of PEG-PLLA-DMA. Regarding phase distribution in the constructs, a homogenously incorporated hydrogel network was demonstrated in a decalcifying study with ethylenediaminetetraacetic acid. Intact, coherent hydrogels remained after dissolution of the inorganic phase via calcium ion complexation. In a third approach, the synthetic hydrogel matrix of the previously described system was replaced by the natural biopolymer gelatin. Simultaneously to brushite formation, physical as well as chemical cross-linking by the compound genipin was performed in the dual setting materials. Thanks to the incorporation of gelatin, elasticity increased significantly, in which concentrations up to 10.0 w/v\% resulted in a certain cohesion of samples after compressive strength testing. They did not dissociate in little pieces but remained intact cuboid specimens though having cracks or fissures. Furthermore, the drug release of two active pharmaceutical ingredients (vancomycin and rifampicin) was investigated over a time frame of 5 weeks. The release exponent was determined according to Korsmeyer-Peppas with n = 0.5 which corresponds to the drug liberation model of Higuchi. A sustained release was observed for the antibiotic vancomycin encapsulated in composites with a gelatin concentration of 10.0 w/v\% and a powder-to-liquid ratio of 2.5 g/mL. With respect to these developments of different dual setting systems, three novel approaches were successfully established by polymerization of monomers and cross-linking of precursors forming an incorporated, homogenous hydrogel matrix in a calcium phosphate network. All studies showed an essential transfer of mechanical performance in direction of flexibility and bendability.}, subject = {Calciumphosphate}, language = {en} } @phdthesis{MeiningergebChrist2018, author = {Meininger [geb. Christ], Susanne}, title = {Processing of calcium and magnesium phosphate cements for bone substitution}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169126}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The main focus of this thesis was the processing of different calcium and magnesium phosphate cements together with an optimization of mechanical and biological properties. Therefore, different manufacturing techniques like 3D powder printing and centrifugally casting were employed for the fabrication of reinforced or biomedically improved implants. One of the main problems during 3D powder printing is the low green strength of many materials, especially when they are only physically bonded and do not undergo a setting reaction. Such materials need post-treatments like sintering to exhibit their full mechanical performance. However, the green bodies have to be removed from the printer requiring a certain stability. With the help of fiber reinforcement, the green strength of printed gypsum samples could be increased by the addition of polymeric and glass fibers within the printing process. The results showed that fiber reinforcement during 3D powder printing is possible and opens up diverse opportunities to enhance the damage tolerance of green bodies as well as directly printed samples. The transfer to biomedically relevant materials like calcium and magnesium phosphate cements and biocompatible fibers would be the next step towards reinforced patient-specific implants. In a second approach, centrifugally casting derived from construction industries was established for the fabrication of hollow bioceramic cylinders. The aim was the replacement of the diaphysis of long bones, which exhibit a tubular structure with a high density of cortical bone on the fringe. By centrifugation, cement slurries with and without additives could be fabricated to tubes. As a first establishment, the processing parameters regarding the material (e.g. cement composition) as well as the set-up (e.g. rotation times) had to be optimized for each system. In respect of mechanics, such tubes can keep up with 3D powder printed tubes, although the mechanical performance of 3D printed tubes is strongly dependent on printing directions. Additionally, some material compositions like dual setting systems cannot be fabricated by 3D powder printing. Therefore, a transfer of such techniques to centrifugally casting enabled the fabrication of tubular structures with an extremely high damage tolerance due to high deformation ability. A similar effect was achieved by fiber (mesh) addition, as already shown for 3D powder printing. Another possibility of centrifugally casting is the combination of different materials resulting in graded structures to adjust implant degradation or bone formation. This became especially apparent for the incorporation of the antibiotic vancomycin, which is used for the treatment of bacterial implant infections. A long-term release could be achieved by the entrapment of the drug between magnesium phosphate cement layers. Therefore, the release of the drug could be regulated by the degradation of the outer shell, which supports the release into an acidic bacterial environment. The centrifugally casting technique exhibited to be a versatile tool for numerous materials and applications including the fabrication of non-centrosymmetric patient-specific implants for the reconstruction of human long bones. The third project aimed to manufacture strontium-substituted magnesium phosphate implants with improved biological behavior by 3D powder printing. As the promoting effect of strontium on bone formation and the inhibitory impact on bone resorption is already well investigated, the incorporation of strontium into a degradable magnesium phosphate cement promised a fast integration and replacement of the implant. Porous structures were obtained with a high pore interconnectivity that is favorable for cell invasion and bone ingrowth. Despite the porosity, the mechanical performance was comparable to pure magnesium phosphate cement with a high reliability of the printed samples as quantitatively determined by Weibull statistics. However, the biological testing was impeded by the high degradation rate and the relating ion release. The high release of phosphate ions into surrounding media and the detachment of cement particles from the surface inhibited osteoblast growth and activity. To distinguish those two effects, a direct and indirect cell seeding is always required for degradable materials. Furthermore, the high phosphate release compared to the strontium release has to be managed during degradation such that the adverse effect of phosphate ions does not overwhelm the bone promoting effect of the strontium ions. The manufacturing techniques presented in this thesis together with the material property improvement offer a diverse tool box for the fabrication of patient-specific implants. This includes not just the individual implant shape but also the application like bone growth promotion, damage tolerance and local drug delivery. Therefore, this can act as the basis for further research on specific medical indications.}, subject = {Calciumphosphate}, language = {en} } @phdthesis{SchamelgebGeffers2017, author = {Schamel [geb. Geffers], Martha}, title = {Novel dual setting approaches for mechanically reinforced mineral biocements}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154946}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Calcium phosphate biocements are inherently brittle materials due to their ceramic nature. Hence, currently applied cement formulations are only indicated for non-load bearing application sites. An approach to reduce cement brittleness is based on the use of cement - polymer composites, which combine the flexibility of a polymeric phase with the hardness and compression strength of a cement matrix. Here, a relatively new strategy is the use of "dual-setting" cements, in which the polymeric phase is simultaneously build up from monomers or prepolymers during cement setting. This approach largely maintains basic properties of the fresh paste such as rheology or setting time. Previous works on such dual setting cements were dealing with a radical polymerization reaction to create the polymeric network. This type of reaction requires the addition of a suitable initiator system (e.g. a tertiary amine in conjunction with ammonium peroxosulfate), which are often cytotoxic and may interfere with the cement setting conditions. The current thesis dealt with alternative strategies, in which the cross-linking and gelation of the second (polymeric or inorganic) cement phase is initiated by the chemical conditions of the setting reaction such that no additional initiator has to be added to the cement paste. In a first approach a six armed star molecule functionalized with isocyanate groups as reactive termini (NCO-sP(EO-stat-PO)) was used to build up a hydrogel matrix, which was then subsequently mineralized with hydroxyapatite nanocrystals following the hydrolysis of incorporated -tricalcium phosphate particles. The stimulus to initiate hydrogel cross-linking are water molecules, which subsequently hydrolyzed isocyanate groups to amines, which then cross-linked with unreacted isocyanate to form urea-bonds. Here, it was possible to show the advantages features of a dual setting system in comparison to the simple combination of hydrogels with unreactive filler particles. By the formation of the cement matrix within the hydrogel a strength improvement by the factor of 30 could be observed. Furthermore, by applying a dual setting system higher mineral concentrations are realizable. The mechanical properties such as elasticity, compression strength and E-modulus of a composite with 30 wt\% NCO-sP(EO-stat-PO) were found to be similar to the properties of cancellous bone. With the motivation to develop a dual setting and resorbable cement, a brushite (CaHPO4·2H2O) forming cement was modified with a second inorganic silica based precursor. The latter was obtained by pre-hydrolysing tetraethyl orthosilicate (TEOS) under acidic conditions. This silica precursor was mixed with a cement powder composed of ß-tricalcium phosphate and monocalcium phosphate, whereas cement setting occurred by a dissolution-precipitation process to form a matrix of brushite. Simultaneously, the increase of the pH during setting from initially 1-2 to values > 4 initiated the condensation reaction of the hydrolysed TEOS. This resulted in an interpenetrating phase composite material in which the micropores of the cement were filled with the nanoporous silica gel. This resulted in a higher density and a compressive strength of 24 MPa, which is approximately 5-10 times higher than the CPC reference at the same powder to liquid ratio. The microporous character of the composites also altered the release of vancomycin as a model drug, whereby in contrast to the quantitative release from the CPC reference, approx. 25 \% of the immobilised drug remained in the composite matrix. It was also observed, that a variation of the TEOS content in the composite enabled a control over cement phase composition to form either brushite, anhydrous monetite or a biphasic mixture of both. Cytocompatibility tests revealed that composites with the highest silicate content showed an increased cell proliferation compared to the silica-free brushite reference. Proliferation was found to be similar to a hydroxyapatite reference with a significant higher activity per cell. Mechanistically, the improved biological response could not be attributed to the released silicate ions, but to a decreased release of phosphate and adsorption of magnesium ions from the cell culture medium. Finally, an investigated dual setting cement system was based on the combination of a brushite forming cement powder with an aqueous silk fibroin solution. Here, changes of both ion concentration and pH during cement setting were shown to build up an interpenetrating fibroin - brushite composite with combined properties of the elastic polymer and the rigid cement. Mechanistically, the low pH of the cement paste (2) as well as the free Ca2+ ions during setting resulted in a conformation change of the dissolved fibroin from random coil to ß-sheet structure. This leads to a rapid gelation and contraction of the fibroin phase with a self-densifying effect on the cement paste. The set composites showed typical ductile fracture behavior under dry testing conditions and a high elasticity under wet conditions with a mechanical strength nearly an order of magnitude higher than the fibroin free cement reference. Cell number and activity against MG63 cells were strongly increased on silk fibroin cement composite surfaces at later time points, which could be again attributed to a decreased ion release and adsorption compared to the fibroin free cements. This in turn slowed down the in vitro degradation of the CPC phase in such composites.}, subject = {Calciumphosphate}, language = {en} } @phdthesis{Straub2014, author = {Straub, Laura Maike}, title = {Materialwissenschaftliche Untersuchungen zu alkalidotierten Calciumphosphatzementen mit Zus{\"a}tzen von Siliziumoxid und Magnesiumoxid}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106687}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Ziel der vorliegenden Arbeit war es, die Materialeigenschaften der CPC hinsichtlich ihres Aush{\"a}rteverhaltens mit unterschiedlichen Herstellungs- und Versuchsparametern systematisch zu analysieren. Die Zementkomponente Ca2KNa(PO4)2 wurde mit den Additiven SiO2 oder MgO in verschiedenen prozentualen Anteilen dotiert. Die Pulver wurden entweder bei 1050 °C gesintert oder bei > 1500 °C geschmolzen. Die Abbindereaktion erfolgte nach 24-st{\"u}ndiger Mahlung mit Wasser, Na2HPO4, 0,1 M Citronens{\"a}ure oder mit MCPA und 0,5 M Citronens{\"a}ure. Im Fokus stand die Beeinflussung der HA-Produktion in Abh{\"a}ngigkeit der Parameter. Urs{\"a}chlich f{\"u}r das Nicht-Abbinden zu HA bei h{\"o}herer Dotierung war die abbindeverz{\"o}gernde Wirkung der Additive, sowie die Transformation der Pulver zu β-TCP bei h{\"o}herer Dotierung. Ein Einfluss der Sintertemperatur auf die HA-Produktion konnte nicht festgestellt werden. Trotz der exzellenten Biokompatibilit{\"a}t von Silizium und Magnesium vermindert eine Metalloxid-Dotierung die Abbindef{\"a}higkeiten der Ca2KNa(PO4)2 -Zemente. Die resultierenden mechanischen Eigenschaften erweisen sich als klinisch unzureichend. Die undotierten Ca2KNa(PO4)2 -Zemente, die zu HA abbinden, eignen sich chirurgisch gesehen eventuell in gering kraftbelasteten Defektbereichen}, subject = {Calciumphosphate}, language = {de} } @phdthesis{Jahn2014, author = {Jahn, Christoph Hans}, title = {In vitro Untersuchung von 3D-pulvergedruckten Monetit-Strukturen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113557}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Die vorliegende Arbeit hatte zum Ziel, die Zytokompatibilit{\"a}t von im 3D-Pulverdruckverfahren hergestellten Zellkulturtr{\"a}gern aus Dicalciumphosphat Anhydrat (CaHPO4, Monetit) in vitro zu untersuchen. Dieses Material l{\"a}sst sich der Substanzklasse der Calciumphosphate zuordnen, welche aufgrund ihrer chemischen {\"A}hnlichkeit zur mineralischen Phase des Knochens einen hohen Stellenwert als Knochenersatzmaterial besitzen. Die Tr{\"a}gerstrukturen wurden mittels CAD-CAM Technologie im 3D-Pulverdruckverfahren fabriziert. Dabei wurde auf ein entsprechend adaptiertes Zementsystem zur{\"u}ckgegriffen, bestehend aus Tricalciumphosphatpulver und Phosphors{\"a}ure. Die prim{\"a}r aus Dicalciumphosphat Dihydrat (Bruschit) bestehenden Konstrukte wurden anschließend durch Autoklavieren hydrothermal in Monetit umgewandelt. Die Kombination einer bei Raumtemperatur ablaufenden Zementabbindereaktion mit einem generativen Fertigungsverfahren wie dem Pulverdruck erm{\"o}glichte die Herstellung monolithischer Formk{\"o}rper ohne thermische Verfestigung (Sinterung). Daher kann eine im Vergleich zu gesinterten Formk{\"o}rpern gute thermodynamische L{\"o}slichkeit und somit gute Biodegradierbarkeit erwartet werden. Zur Evaluierung der Zytokompatibilit{\"a}t des pulvergedruckten Materials wurde nach Besiedlung mit osteoblast{\"a}ren Zellen deren Proliferations- und Differenzierungsverhalten in vitro untersucht. Die Zellviabilit{\"a}t, die Aktivit{\"a}t der Alkalischen Phosphatase sowie die Konzentration von Osteocalcin dienten als Parameter. Weiterhin wurden die Konzentration freier Elektrolyte und der pH-Wert im N{\"a}hrmedium zur Evaluierung der L{\"o}slichkeit der Tr{\"a}ger in vitro herangezogen. Anhand licht- und rasterelektronenmikroskopischer Aufnahmen erfolgte eine qualitativ-morphologische Einsch{\"a}tzung des Zellwachstums. Die Untersuchungen zeigen eine gute Zytokompatibilit{\"a}t des Tr{\"a}germaterials aus Monetit. Die im Vergleich zu den Positiv-Kontrollen etwas erniedrigten Werte lassen sich durch die im N{\"a}hrmedium festgestellten Elektrolytverschiebungen erkl{\"a}ren, welche durch die thermodynamische L{\"o}slichkeit von Monetit zustande kommen. Diese Problematik der Zellkultur als geschlossenem System sollte jedoch in vivo bei stetigem Fl{\"u}ssigkeits- und Metabolitenaustausch keine Rolle spielen. Die Ergebnisse liefern einen Beitrag zur Erarbeitung neuartiger Knochenzemente, insbesondere aus Monetit. Klinisch interessant erscheint die verfahrensbedingte M{\"o}glichkeit, die Anforderungen nach guter Degradierbarkeit, pr{\"a}operativer Fabrizierung und individueller Formgebung (z.B. passend zu einem individuellen Defekt) miteinander kombinieren zu k{\"o}nnen.}, subject = {Calciumphosphate}, language = {de} } @phdthesis{Spatz2013, author = {Spatz, Kerstin}, title = {Mechanische und rheologische Eigenschaften von Calciumphosphat-Zementen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124860}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Zur Erh{\"o}hung der mechanischen Stabilit{\"a}t mineralischer Knochenzemente aus Calciumorthophosphaten (CPC) wurde in einem TTCP/DCPA-System das Zementedukt TTCP mit verschiedenen biokompatiblen Oxiden (SiO2, TiO2, ZrO2) w{\"a}hrend des Herstellungsprozesses dotiert. Dies f{\"u}hrte zur Bildung von Calciummetallaten und einer Herabsetzung der L{\"o}slichkeit der TTCP-Komponente des Zements. Gegen{\"u}ber einem oxidfreien Zement konnte die Druckfestigkeit von 65 MPa auf 80 MPa (SiO2) bzw. 100 MPa (TiO2) gesteigert werden. In einem zweiten Ansatz zur Verbesserung der Injizierbarkeit wurden die Wechselwirkungen der Partikeloberfl{\"a}chen mit der fl{\"u}ssigen Zementphase betrachtet. Durch biokompatible Additive sollte eine repulsive elektrostatische Wechselwirkung eingestellt werden, um Partikelagglomerate effektiv zu dispergieren und eine verfl{\"u}ssigende Wirkung zu erreichen. Die Injizierbarkeit eines TTCP/DCPA-Zements durch eine Kan{\"u}le mit 800 µm Durchmesser konnte durch die Verwendung von 500 mM tri-Natriumzitrat-L{\"o}sung aufgrund einer deutlichen Herabsetzung der Viskosit{\"a}t der Zementpaste signifikant gesteigert werden (>95\%, P/L 3,3/1, Kraftaufwand 20 N). Abschließend wurde der Einfluss der Partikelgr{\"o}ßenverteilung auf die Festigkeit und Injizierbarkeit einer auf monomodaler Partikelgr{\"o}ßenverteilung basierten Zementmatrix untersucht. Hierzu wurden einem mechanisch aktivierten a-TCP-System unreaktive, feink{\"o}rnige F{\"u}llstoffpopulationen (TiO2, CaHPO4, CaCO3) zugesetzt und systematisch deren Effekt in Verbindung mit einer Partikelaufladung durch tri-Natriumzitrat auf die rheologischen und mechanischen Eigenschaften untersucht. Erst die Kombination einer bimodalen Partikelgr{\"o}ßenverteilung mit tri-Natriumzitrat-L{\"o}sung f{\"u}hrte zu einer starken Erniedrigung der Viskosit{\"a}t, damit zur nahezu vollst{\"a}ndigen Injizierbarkeit der Zemente und einer teilweise signifikanten Steigerung der mechanischen Festigkeiten (z.B. 72 MPa reiner a-TCP-Zement auf 142 MPa mit Zusatz von CaHPO4).}, subject = {Biomaterial}, language = {de} } @phdthesis{Vorndran2011, author = {Vorndran, Elke}, title = {Rapid-Prototyping hydraulisch h{\"a}rtender Calcium- und Magnesiumphosphatzemente mit lokaler Wirkstoffmodifikation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70245}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Ziel dieser Arbeit war die Herstellung individuell formbarer Strukturen mittels des 3D-Pulverdrucks auf Basis von bei Raumtemperatur hydraulisch abbindenden Knochenzementpulvern. Neben der Entwicklung neuartiger Zementformulierungen auf Basis von Magnesiumphosphaten war vor allem die gleichzeitige Ausstattung der Werkstoffe mit temperaturlabilen und bioaktiven Verbindungen ein wichtiger Entwicklungsschritt. Die Lokalisation der Wirkstoffe korreliert dabei mit entsprechenden Farbinformationen im Design der Konstrukte, die durch einen Mehrfarbendrucker physikalisch abgebildet werden. Das auf Calciumphosphat basierende System hat den Nachteil, dass die Abbindereaktion bei stark sauren pH-Werten abl{\"a}uft, was negative Auswirkungen auf die gleichzeitige Ausstattung mit sensitiven Wirkstoffen hat. Zur L{\"o}sung dieser Problematik wurde ein neues Knochenzementpulver auf Magnesiumphosphatbasis entwickelt, welches unter neutralen pH-Bedingungen mit ammoniumhaltigem Binder zu dem Mineral Struvit abbindet. Das Zementpulver aus Trimagnesiumphosphat wurde bez{\"u}glich der pulvertechnologischen Eigenschaften, wie Partikelgr{\"o}ße, Partikelgr{\"o}ßenverteilung, Gl{\"a}ttungseigenschaften und Sch{\"u}ttdichte sowie hinsichtlich des Abbindeverhaltens charakterisiert und f{\"u}r den Druckprozess optimiert. Die hohe Strukturgenauigkeit erm{\"o}glichte die Darstellung von makropor{\"o}sen Strukturen mit einem minimalen Porendurchmesser von ca. 200 µm. Gute mechanische Kennwerte der gedruckten Strukturen, sowie eine hohe Umsetzungsrate zur gew{\"u}nschten Phase Struvit wurden durch eine Nachh{\"a}rtung in Ammoniumphosphatl{\"o}sung erhalten. Die Druckfestigkeit betrug > 20 MPa und der Phasenanteil von Struvit konnte auf insgesamt 54 \% gesteigert werden. Die Darstellung von wirkstoffmodifizierten Calciumphosphat- und Magnesiumphosphatstrukturen durch Verwendung eines Mehrfarbendruckers wurde beginnend vom Design der Strukturen bis hin zur experimentellen Bestimmung der Korrelation von Farbinformation und Binderapplikation etabliert. Zur Sicherstellung einer hohen Druckqualit{\"a}t und der Ortsst{\"a}ndigkeit gedruckter Wirkstoffe erwies sich eine zus{\"a}tzliche Modifikation des Tricalciumphosphatpulvers mit quellf{\"a}higen Polymeren (Hydroxypropylmethyl-cellulose (HPMC) bzw. Chitosan) als erfolgreich. Eine maximale Aufl{\"o}sung von ca. 400 µm konnte f{\"u}r eine HPMC/Chitosan/Calciumphosphat-Variante erreicht werden, w{\"a}hrend das hochreaktive Magnesiumphosphat/Magnesiumoxid-System eine Aufl{\"o}sung von 480 µm aufwies. Die Ortsst{\"a}ndigkeit eingebrachter L{\"o}sungen war Voraussetzung f{\"u}r die Steuerung der Freisetzungskinetik. Das Freisetzungsverhalten in vitro wurde in Abh{\"a}ngigkeit von der Wirkstofflokalisation (homogen, Depot, Gradient) innerhalb der Matrix und unter Einbringung zus{\"a}tzlicher polymerer Diffusionsbarrieren f{\"u}r den Wirkstoff Vancomycin untersucht. Dabei zeigte sich, dass die Modifikation der Matrices mit Polymeren zu einer verz{\"o}gerten Freisetzung f{\"u}hrte. Die lokale Wirkstoffmodifikation der Matrices in Form eines Depots oder Gradienten hatte Einfluss auf die Freisetzungskinetik, wobei eine lineare Freisetzung mit der Zeit (Kinetik 0. Ordnung) erreicht werden konnte. Die applizierten Wirkstoffe umfassten sowohl niedermolekulare Verbindungen, wie etwa das Antibiotikum Vancomycin oder das Polysaccharid Heparin, als auch proteinbasierte Faktoren wie den Knochenwachstumsfaktor rhBMP-2. Beurteilt wurde die pharmakologische Wirksamkeit der Verbindungen nach dem Druck, sowie nach der Freisetzung aus einer Calciumphosphatmatrix f{\"u}r den Wirkstoff Vancomycin. Es konnte belegt werden, dass die biologische Aktivit{\"a}t nach dem Druckprozess zu {\"u}ber 80 \% erhalten blieb. Limitierend war der stark saure pH-Wert bei bruschitbasierten Systemen, der zu einer Inaktivierung des Proteins f{\"u}hrte. Diesem Problem k{\"o}nnte durch die Nutzung des neutral abbindenden Magnesiumphosphatsystems entgegengewirkt werden. Abschließend erfolgten eine mikrostrukturelle Charakterisierung der Calciumphosphat- und Magnesiumphosphatmatrices mittels µ-CT-Analyse und Heliumpyknometrie, sowie eine quantitative Phasenanalyse nach Rietveld. Experimentell konnte nachgewiesen werden, dass mit Hilfe des 3D-Pulverdruck die Darstellung von Makroporen > 200 µm m{\"o}glich ist. Die Analyse der Phasenzusammensetzung ergab, dass die Umsetzungsrate von Tricalciumphosphat und Trimagnesiumphosphat zu den gew{\"u}nschten Phasen Bruschit und Struvit infolge des Nachh{\"a}rtungsprozesses signifikant gesteigert werden konnte. Im Zuge dessen nahm die Porosit{\"a}t der gedruckten Matrices der Phase Struvit von 58 \% auf 26 \% und der Phase Bruschit von 47 \% auf 38 \% ab.}, subject = {3D-Druck}, language = {de} } @phdthesis{Koehler2011, author = {K{\"o}hler, Karolin}, title = {Antimikrobielle Eigenschaften von Calciumalkaliphosphat dotierten Polymermatrices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-84072}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Die antimikrobiellen und physikalisch-chemischen Eigenschaften von experimentellen lichth{\"a}rtenden Kompositen, die mit mechanisch aktivierten F{\"u}llk{\"o}rpern aus Calciumalkaliphosphaten wie CaKPO4, CaNaPO4 oder Ca2KNa(PO4)2 versehen waren, wurden verglichen mit kommerziellen silanmodifizierten Cristobalit-F{\"u}llk{\"o}rpern. Die antimikrobiellen Eigenschaften wurden mit Streptococcus mutans, Staphylococcus aureus und einem klinisch isolierten Plaquemix getestet. Das Ausmaß der Reduktion des Bakterienwachstums auf den modifizierten Kompositen wurde mittels des Proliferationsreagenz WST-1, das ein Messen der Stoffwechselaktivit{\"a}t und somit der Besiedlung mit lebenden Bakterien erm{\"o}glicht. Zu den getesteten Materialeigenschaften z{\"a}hlten unter anderem die Konversionsrate und die Biegefestigket. Alle Alkaliphosphat dotierten Komposite zeigten im Gegensatz zu den Vergleichskompositen eine antimikrobielle Wirkung in Form einer Bakterienreduktion um 25-70\%, die wahrscheinlich auf eine Wirkung im Mikromilieu zur{\"u}ckgef{\"u}hrt werden kann, eine Biegefestigkeit von 55-77 MPa, was dem Normwert entsprach, und einen Konversionsgrad von 44-66\%. Die Ergebnisse dieser Studie deuten darauf hin, dass die Calciumalkaliphosphat dotieren Komposite eine antimikrobielle Wirkung aufweisen ohne dabei die wesentlichen Eigenschaften des Werkstoffes zu beeinflussen.}, subject = {Komposit }, language = {de} } @phdthesis{Knappe2006, author = {Knappe, Oliver}, title = {Antimikrobiell wirksame Zemente aus Tetracalciumphosphat und alkalidotierten Calciumphosphaten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-19648}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Antimikrobieller Effekt mechanisch aktivierter Alkaliphosphatzemente und Tetracalciumphosphat.F{\"u}r die mechanisch aktivierten Alkaliphosphate und das Tetracalciumphosphat konnten Verbesserungen ihrer mechanischen Eigenschaften und ihrer biologischen Aktivit{\"a}t (antimikrobieller Effekt) dargestellt werden. So zeigten die mechanisch aktivierten Zemente hinsichtlich ihrer Druck- und Zugfestigkeit, des L{\"o}slichkeitsverhaltens und dem hervorgerufenen antimikrobiellen Effekt weitaus bessere Ergebnisse als die unreaktiven nicht aktivierten Ausgangsstoffe. Der antimikrobielle Effekt wurde anhand unterschiedlicher Bakterienst{\"a}mme und einem Pilzstamm nachgewiesen. Die durchaus positiven Ergebnisse implizieren einen klinisch Einsatz in den bereichen der Endodontie und als Knochenersatzmaterial in der rekonstrutiven Behandlung im Kieferbereich. Vorher sollte eine toxikologische Aoswertung der angewandten Zemente erfolgen.}, language = {de} } @phdthesis{Hofmann2003, author = {Hofmann, Michael Peter}, title = {Physikalische Charakterisierung von Calciumphosphat-Pulvern zur Einstellung von Prozessparametern f{\"u}r die Herstellung von Knochenzement}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7315}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Die Arbeit behandelt die physikalische Charakterisierung der Herstellung einer Tetracalciumphosphat (TTCP) / Calciumhydrogenphosphat (DCPA) Pulvermischung zur Anwendung als Knochenzement. Ziel war die Gewinnung einer Korrelation von Prozessparametern mit anwendungsrelevanten Zementeigenschaften, also hohe mechanische Festigkeit, definierte Abbindezeit, physiologischer pH-Wert-Verlauf und Reproduzierbarkeit. Die Einstellung eines physiologischen pH-Werts im Bereich 7-8 der Zementpaste erfordert eine geeignete L{\"o}sungsrate beider Pulverkomponenten. Dies gelingt durch Mahlung mit einer Einstellung der mittleren Partikelgr{\"o}ße von 10-20 µm (TTCP) und 0,5-2 µm (DCPA). DCPA wird nass gemahlen; das Suspensionsmedium dient der Agglomerationsverminderung, da bei Partikelgr{\"o}ßen von 0,5-2 µm interpartikul{\"a}re Kr{\"a}fte gegen{\"u}ber der Gewichtskraft dominieren. TTCP wurde durch Sinterung von DCPA und Calciumcarbonat bei 1500°C hergestellt und trocken vermahlen. Die Ermittlung der mittleren Partikelgr{\"o}ßen und relativen Breite der Partikelgr{\"o}ßenverteilungen, der sogenannten Spanne, nach Mahlung erfolgte durch Laserstreuung und Auswertung der Streumuster nach der Mie-Theorie. Mahlungen von TTCP f{\"u}hren zu Feinkornanteilen mit Partikelgr{\"o}ßen < 1 µm, die eine gleichm{\"a}ßige L{\"o}sungsrate zu Beginn der Abbindereaktion verhindern. Durch Variation der Mahlparameter kann dieser Feinkornanteil minimiert werden. Dennoch besteht die Notwendigkeit, Abbinde-Beschleuniger auf Natriumphosphat (NaP)-Basis zu verwenden, um die erh{\"o}hte L{\"o}sungsrate der TTCP-Komponente zu kompensieren. Kriterium f{\"u}r die Auswahl des geeigneten Suspensionsmediums f{\"u}r die Nassmahlung von DCPA ist das Zetapotential von DCPA-Partikeln in fl{\"u}ssiger Phase, welches durch Laser-Doppler-Elektrophorese gemessen wird. Die Messungen zeigen, dass sich das Zetapotential mit Partikelgr{\"o}ße und Spanne korrelieren l{\"a}sst. Hohe Zetapotential-Werte zu Beginn der Mahlung f{\"u}hren zu kleiner Endpartikelgr{\"o}ße. Das Zetapotential von gemahlenen DCPA-Pulvern steigt bei der Mahlung an und bestimmt die minimale Spanne. Partikelgr{\"o}ße und Spanne bestimmen {\"u}ber die effektive Viskosit{\"a}t außerdem das Ende des Mahlvorgangs. Als Suspensionsmedium zur Einstellung kleiner Partikelgr{\"o}ße bei gleichzeitig geringer Spanne eignet sich Reinstwasser, gefolgt von Ethylenglykol und Ethanol. Es lassen sich mittlere Partikelgr{\"o}ßen von 0,6 µm bei einer Spanne von 1,0 realisieren. Die Mahlung setzt neben der Partikelgr{\"o}ße die Kristallinit{\"a}t von DCPA und TTCP herab, durch eine mechanisch induzierte Phasenumwandlung in den amorphen Zustand. R{\"o}ntgendiffraktometrische Untersuchungen, XRD, der Pulver zeigen eine Abnahme der Intensit{\"a}t der Beugungsreflexe um ca. 50\% f{\"u}r TTCP und ca. 30\% f{\"u}r DCPA nach 24h. Die Auswertung der Beugungsspektren durch Rietveld-Analyse ergibt gleichzeitig eine kontinuierliche Abnahme der mittleren Kristallitgr{\"o}ße. Die Bildung amorpher Anteile resultiert f{\"u}r TTCP in abbindef{\"a}higen, einkomponentigen Zementen, die im stark basischen Bereich mit 2.5\%iger Na2HPO4-L{\"o}sung Hydroxylapatit und Calciumhydroxid bilden. Hochkristallines TTCP ist dagegen nicht reaktiv, bedingt durch die Ausbildung einer Hydroxylapatitschicht um die Partikel. Suspensionsmedium und Luftfeuchtigkeit bewirken eine Kontamination der feink{\"o}rnigen Pulver. Stickstoffadsorptions-Messungen, BET, zeigen die Lokalisation des Kontaminats auf der kompakten, nicht por{\"o}sen Partikeloberfl{\"a}che. Der Anteil an nicht entfernbarem Suspensionsmedium, bestimmt durch Thermogravimetrie, liegt bei 3-5\% nach Trocknung an Luft und l{\"a}sst sich auf < 1\% bei Vakuumtrocknung reduzieren. W{\"a}hrend organische wasserl{\"o}sliche Kontaminationen keinen Einfluss auf die L{\"o}sungsrate und Reaktivit{\"a}t von DCPA ergeben, f{\"u}hrt Wasser als Suspensionsmedium bzw. das Einwirken von Luftfeuchtigkeit auf die getrockneten Pulver zu einer starken Herabsetzung der Reaktivit{\"a}t. Ursache ist die Ausbildung einer diffusionshemmenden Hydroxylapatit-Schicht um die Partikel durch Hydrolyse der Calciumphosphate. DCPA, durch Mahlung in Wasser inaktivierend kontaminiert, zeigt die niedrigste L{\"o}sungsrate, trotz großer spezifischer Oberfl{\"a}che. Die Mischung der Pulver erfolgt durch Selbstmischung bei geringer mechanischer Krafteinleitung; die hochdispersen DCPA-Partikel agglomerieren aufgrund interpartikul{\"a}rer van-der-Waals-Kr{\"a}fte an den großen TTCP-Partikeln. Ausgeh{\"a}rtete Zemente zeigen eine Korrelation zwischen der Druckfestigkeit und der Partikelgr{\"o}ße, sowie eine Korrelation von Zugfestigkeit und Spanne der Partikelgr{\"o}ßenverteilung von DCPA. Ein erh{\"o}hter Feinkornanteil des TTCP-Pulvers f{\"u}hrt zur Reduktion der mechanischen Festigkeit. Die vorgestellte physikalische Charakterisierung der TTCP/DCPA- Pulverherstellung f{\"u}hrt zu einem Medizinprodukt mit Druckfestigkeiten von 75 MPa und Zugfestigkeiten von 12 MPa. Abbindezeit und pH-Wert-Verlauf bei der Aush{\"a}rtung lassen sich durch die Konzentration von NaP-Abbindebeschleunigern einstellen.}, subject = {Knochenzement}, language = {de} }