@article{GlutschKneitzGesierichetal.2021, author = {Glutsch, Valerie and Kneitz, Hermann and Gesierich, Anja and Goebeler, Matthias and Haferkamp, Sebastian and Becker, J{\"u}rgen C. and Ugurel, Selma and Schilling, Bastian}, title = {Activity of ipilimumab plus nivolumab in avelumab-refractory Merkel cell carcinoma}, series = {Cancer Immunology, Immunotherapy}, volume = {70}, journal = {Cancer Immunology, Immunotherapy}, number = {7}, issn = {14320851}, doi = {10.1007/s00262-020-02832-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265635}, pages = {2087-2093}, year = {2021}, abstract = {Background Merkel cell carcinoma (MCC) is a rare and aggressive neuroendocrine cutaneous malignancy with poor prognosis. In Europe, approved systemic therapies are limited to the PD-L1 inhibitor avelumab. For avelumab-refractory patients, efficient and safe treatment options are lacking. Methods At three different sites in Germany, clinical and molecular data of patients with metastatic MCC being refractory to the PD-L1 inhibitor avelumab and who were later on treated with combined IPI/NIVO were retrospectively collected and evaluated. Results Five patients treated at three different academic sites in Germany were enrolled. Three out of five patients investigated for this report responded to combined IPI/NIVO according to RECIST 1.1. Combined immunotherapy was well tolerated without any grade II or III immune-related adverse events. Two out of three responders to IPI/NIVO received platinum-based chemotherapy in between avelumab and combined immunotherapy. Conclusion In this small retrospective study, we observed a high response rate and durable responses to subsequent combined immunotherapy with IPI/NIVO in avelumab-refractory metastatic MCC patients. In conclusion, our data suggest a promising activity of second- or third-line PD-1- plus CTLA-4-blockade in patients with anti-PD-L1-refractory MCC.}, language = {en} } @article{HesbacherPfitzerWiedorferetal.2016, author = {Hesbacher, Sonja and Pfitzer, Lisa and Wiedorfer, Katharina and Angermeyer, Sabrina and Borst, Andreas and Haferkamp, Sebastian and Scholz, Claus-J{\"u}rgen and Wobser, Marion and Schrama, David and Houben, Roland}, title = {RB1 is the crucial target of the Merkel cell polyomavirus Large T antigen in Merkel cell carcinoma cells}, series = {Oncotarget}, volume = {7}, journal = {Oncotarget}, number = {22}, doi = {10.18632/oncotarget.8793}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177858}, pages = {32956-32968}, year = {2016}, abstract = {The pocket protein (PP) family consists of the three members RB1, p107 and p130 all possessing tumor suppressive properties. Indeed, the PPs jointly control the G1/S transition mainly by inhibiting E2F transcription factors. Notably, several viral oncoproteins are capable of binding and inhibiting PPs. Merkel cell polyomavirus (MCPyV) is considered as etiological factor for Merkel cell carcinoma (MCC) with expression of the viral Large T antigen (LT) harboring an intact PP binding domain being required for proliferation of most MCC cells. Therefore, we analyzed the interaction of MCPyV-LT with the PPs. Co-IP experiments indicate that MCPyV-LT binds potently only to RB1. Moreover, MCPyV-LT knockdown-induced growth arrest in MCC cells can be rescued by knockdown of RB1, but not by p107 or p130 knockdown. Accordingly, cell cycle arrest and E2F target gene repression mediated by the single PPs can only in the case of RB1 be significantly reverted by MCPyV-LT expression. Moreover, data from an MCC patient indicate that loss of RB1 rendered the MCPyV-positive MCC cells LT independent. Thus, our results suggest that RB1 is the dominant tumor suppressor PP in MCC, and that inactivation of RB1 by MCPyV-LT is largely sufficient for its growth supporting function in established MCPyV-positive MCC cells.}, language = {en} }