@phdthesis{Auerhammer2018, author = {Auerhammer, Nina A.}, title = {Energy Transfer and Excitonic Interactions in Conjugated Chromophore Arrangements of Bodipys and Pyrenes and Squaraines}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166721}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In this work the energy transfer and excitonic coupling in different chromophore arrangements were investigated. A difference in the coupling strength was introduced by varring the connecting unit and the spacial orientation relative to each other. The synthesis of the 2,7-substituted pyrene compounds could be optimised and good yields of HAB 1 and HAB 2 and small amounts of HAB 2 could be achieved by cobalt-catalysed trimerisation or Diels Alder reaction in the end. Absorption and fluorescence spectra reveal strong intramolecular interactions between the pyrene molecules in the HAB 1. Excitation spectra recorded at the high and low energy fluorescence suggest the contribution of two components to the spectra. One being similar to the ground state aggregate and a second species similar to undisturbed pyrene. All these feature can be accounted to two different fluorescent states which are due to electronical decoupling in the excited state. Due to the strong intramolecular coupling already in the ground state of the molecule, no energy transfer could be studied, as the six pyrene units cannot be seen as separate spectroscopic entities between which energy could be transferred. In the second part of this thesis dye conjugates of different size and alignment were synthesised to study the interaction of the transition-dipole moments. Therefore a systematic investigation of Sonogashira conditions was performed in order to obtain good yields of the desired compounds and keep dehalogenation at a minimum level. Nevertheless only the symmetrical triads could be purified as the asymmeric triads and pentades proved to decompose during purification. The pyrene containing triads Py2B and Py2SQB show small interactions already in the ground state represented by red shifts of the spectra and a broadening of the bands. Nevertheless, these interactions are in the weak coupling regime and energy transfer between the constituents is possible. On the contrary in the TA spectra it is obvious that always the whole triad, at least to some extend is excited. To question if the excitation of the high energy state is deactivated by energy transfer or rather IC in a superchromophore could not be distinguished in the course of this work. At present additional time-dependent calculations of the dynamics are in progress to get a deeper understanding of the photophysical processes taking place in the triads. The dye conjugates B2SQB-3 and (SQB)2B-4 can be assigned to the strong interaction range and hence are describable by exciton theory. The transition-dipole moments proved to be more than additive and increase for both compounds from absorption to fluorescence. This can be explained by an enhancement of the coupling in the relaxed excited state compared to the absorption into the Franck-Condon state due to a more steep potential energy surface in the excited state and hence smaller fluctuations. In the last part of this thesis the influence of disrupting electronical communication by implementing a rigid non-conjugated bridge in a bichromophoric trans-squaraine system was tested. While the flexible linked squaraines show complex spectra due to different conformers the SQA2Anth compound is rigified and no rotation is possible. This change in flexibility is represented in the steady-state spectra where just one main absorption and fluorescence band is present due to a single allowed excitonic state. The system proves to own an excited state that is completely delocalised over the whole molecule.}, subject = {Chromophor}, language = {en} } @phdthesis{Spenst2017, author = {Spenst, Peter}, title = {Xylylene Bridged Perylene Bisimide Cyclophanes and Macrocycles}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139015}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {This work is concerned with the syntheses and photophysical properties of para-xylylene bridged macrocycles nPBI with ring sizes from two to nine PBI units, as well as the complexation of polycyclic aromatic guest compounds. With a reduced but substantial fluorescence quantum yield of 21\% (in CHCl3) the free host 2PBI(4-tBu)4 can be used as a dual fluorescence probe. Upon encapsulation of rather electron-poor guests the fluorescence quenching interactions between the chromophores are prevented, leading to a significant fluorescence enhancement to > 90\% ("turn-on"). On the other hand, the addition of electron-rich guest molecules induces an electron transfer from the guest to the electron-poor PBI chromophores and thus quenches the fluorescence entirely ("turn-off"). The photophysical properties of the host-guest complexes were studied by transient absorption spectroscopy. These measurements revealed that the charge transfer between guest and 2PBI(4-tBu)4 occurs in the "normal region" of the Marcus-parabola with the fastest charge separation rate for perylene. In contrast, the charge recombination back to the PBI ground state lies far in the "inverted region" of the Marcus-parabola. Beside complexation of planar aromatic hydrocarbons into the cavity of the cyclophanes an encapsulation of fullerene into the cyclic trimer 3PBI(4-tBu)4 was observed. 3PBI(4-tBu)4 provides a tube-like structure in which the PBI subunits represent the walls of those tubes. The cavity has the optimal size for hosting fullerenes, with C70 fitting better than C60 and a binding constant that is higher by a factor of 10. TA spectroscopy in toluene that was performed on the C60@3PBI(4-tBu)4 complex revealed two energy transfer processes. The first one comes from the excited PBI to the fullerene, which subsequently populates the triplet state. From the fullerene triplet state a second energy transfer occurs back to the PBI to generate the PBI triplet state. In all cycles that were studied by TA spectroscopy, symmetry-breaking charge separation (SB-CS) was observed in dichloromethane. This process is fastest within the PBI cyclophane 2PBI(4-tBu)4 and slows down for larger cycles, suggesting that the charge separation takes place through space and not through bonds. The charges then recombine to the PBI triplet state via a radical pair intersystem crossing (RP-ISC) mechanism, which could be used to generate singlet oxygen in yields of ~20\%. By changing the solvent to toluene an intramolecular folding of the even-numbered larger cycles was observed that quenches the fluorescence and increases the 0-1 transition band in the absorption spectra. Force field calculations of 4PBI(4-tBu)4 suggested a folding into pairs of dimers, which explains the remarkable odd-even effect with respect to the number of connected PBI chromophores and the resulting alternation in the absorption and fluorescence properties. Thus, the even-numbered macrocycles can fold in a way that all chromophores are in a paired arrangement, while the odd-numbered cycles have open conformations (3PBI(4-tBu)4, 5PBI(4-tBu)4, 7PBI(4-tBu)4) or at least additional unpaired PBI unit (9PBI(4-tBu)4). With these experiments we could for the first time give insights in the interactions between cyclic PBI hosts and aromatic guest molecules. Associated with the encapsulation of guest molecules a variety of possible applications can be envisioned, like fluorescence sensing, chiral recognition and photodynamic therapy by singlet oxygen generation. Particularly, these macrocycles provide photophysical relaxation pathways of PBIs, like charge separation and recombination and triplet state formation that are hardly feasible in monomeric PBI dyes. Furthermore, diverse compound specific features were found, like the odd-even effect in the folding process or the transition of superficial nanostructures of the tetrameric cycle influenced by the AFM tip. The comprehensive properties of these macrocycles provide the basis for further oncoming studies and can serve as an inspiration for the synthesis of new macrocyclic compounds.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Zieschang2014, author = {Zieschang, Fabian}, title = {Energy and Electron Transfer Studies of Triarylamine-based Dendrimers and Cascades}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101866}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In this work the synthesis of dendritic macromolecules and small redox cascades was reported and studies of their energy and electron transfer properties discussed. The chromophores in the dendrimers and the redox cascades are linked via triazoles, which were built up by CuAAC. Thereby, a synthetic concept based on building blocks was implemented, which allowed the exchange of all basic components. Resulting structures include dendrimers composed exclusively of TAAs (G1-G3), dendrimers with an incorporated spirobifluorene core (spiro-G1 and spiro-G2) and the donor-acceptor dendrimer D-A-G1, in which the terminal groups are exchanged by NDIs. Furthermore, a series of model compounds was synthesised in order to achieve a better understanding of the photophysical processes in the dendrimers. A modification of the synthetic concept for dendrimers enabled the synthesis of a series of donor-acceptor triads (T-Me, T-Cl and T-CN) consisting of two TAA donors and one NDI acceptor unit. The intermediate TAA chromophore ensured a downhill redox gradient from the NDI to the terminal TAA, which was proved by cyclic voltammetry measurements. The redox potential of the intermediate TAA was adjusted by different redox determining substituents in the "free" p-position of the TAA. Additionally, two dyads (Da and Db) were synthesised which differ in the junction of the triazole to the TAA or the NDI, respectively. In these cascades a nodal-plane along the N-N-axes in the NDI and a large twist angle between the NDI and the N-aryl substituent guaranteed a small electronic coupling. The photophysical investigations of the dendrimers focused on the homo-energy transfer properties in the TAA dendrimers G1-G3. Steady-state emission spectroscopy revealed that the emission takes place from a charge transfer state. The polar excited state resulted in a strong Stokes shift of the emission, which in turn led to a small spectral overlap integral between the absorption of the acceptor and the emission of the donor in the solvent relaxed state. According to the F{\"o}rster theory, the overlap integral strongly determines the energy transfer rate. Fluorescence up-conversion measurements showed a strong and rapid initial fluorescence anisotropy decay and a much slower decrease on the longer time scale. The experiment revealed a fast energy transfer in the first 2 ps followed by a much slower energy hopping. Time resolved emission spectra (TRES) of the model compound M indicated a solvent relaxation on the same time scale as the fast energy transfer. The F{\"o}rster estimation of energy transfer rates in G1 explains fast energy transfer in the vibrotionally relaxed state before solvent relaxation starts. Thereby, the emission spectrum of G1 in cyclohexane served as the time zero spectrum. Thus, solvent relaxation and fast energy transfer compete in the first two ps after excitation and it is crucial to discriminate between energy transfer in the Franck-Condon and in the solvent relaxed state. Furthermore, this finding demonstrates that fast energy transfer occurs even in charge transfer systems where a large Stokes shift prevents an effective spectral overlap integral if there is a sufficient overlap integral in before solvent relaxation. Energy transfer upon excitation was also observed in the spiro dendrimers spiro-G1 and spiro-G2 and identified by steady-state emission anisotropy measurements. It was assumed that the energy in spiro-G1 is completely distributed over the entire molecule while the energy in spiro-G2 is probably distributed over only one individual branch. This finding was based on a more polarised emission of spiro-G2 compared to spiro-G1. This issue has to be ascertained by e.g. time resolved emission anisotropy measurements in further energy transfer studies. Concerning the electron transfer properties of TAA-triazole systems the radical cations of G1-G2, spiro-G1 and spiro-G2 and of the model compound M were investigated by steady-state absorption spectroscopy. Experiments showed that the triazole bridge exhibits small electronic communication between the adjacent chromophores but still possesses sufficient electronic coupling to allow an effective electron transfer from one chromophore to the other. Due to the high density of chromophores, their D-A-D structure and their superficial centrosymmetry, the presented dendrimers are prospective candidates for two-photon absorption applications. The dyads, triads and the donor-acceptor dendrimer D-A-G1 were investigated regarding their photoinduced electron transfer properties and the effects that dominate charge separation and charge recombination in these systems. The steady-state absorption spectra of all cascades elucidated a superposition of the absorption characteristics of the individual subunits and spectra indicated that the chromophores do not interact in the electronic ground state. Time resolved transient absorption spectroscopy of the cascades was performed in the fs- and ns-time regime in MeCN and toluene as solvent. Measurements revealed that upon with 28200 cm-1 (355) nm and 26300 cm-1 (380 nm), respectively, an electron is transferred from the TAA towards the NDI unit yielding a CS state. In the triads at first a CS1 state is populated, in which the NDI is reduced and the intermediate TAA1 is oxidised. Subsequently, an additional electron transfer from the terminal TAA2 to TAA1 led to the fully CS2 state. Fully CS states of the dyads and triads exhibit lifetimes in the ns-time regime. In contrast for Db in MeCN, a lifetime of 43 ps was observed for the CS state together with the population of a 3NDI state. The signals of the other CS states decay biexponentially, which is a result of the presence of the 1CS and the 3CS states. While magnetic field dependent measurements of Db did not show an effect due to the large singlet-triplet splitting, T-CN exhibited a strong magnetic field dependence which is an evidence for the 1CS/3CS assignment. Further analysis of the singlet-triplet dynamics are required and are currently in progress. Charge recombination occurred in the Marcus inverted region for compounds solved in toluene and in the Marcus normal region for MeCN as solvent. However, a significant inverted region effect was observed only for Db. Triads are probably characterised by charge recombination rates in the inverted and in the normal region near to the vertex of the Marcus parabola. Hence the inverted region effect is not pronounced and the rate charge recombination rates are all in the same magnitude. However, compared to the charge recombination rate of Db the enlarged spatial distance between the terminal TAA and the NDI in the fully CS2 states in the triads resulted in reduced charge recombination rates by ca. one order of magnitude. More important than a small charge recombination rate is an overall lifetime of the CS states and this lifetime can significantly be enhanced by the population of the 3CS state. The reported results reveal that a larger singlet-triplet splitting in the dyads led to a CS state lifetime in the us time regime while a lifetime in the ns-time regime was observed in cases of the triads. Moreover, the singlet-triplet splitting was found to be solvent dependent in the triads, which is a promising starting point for further investigations concerning singlet-triplet splitting. The donor-acceptor dendrimer D-A-G1 showed similar characteristics to the dyads. The generation of a CS state is assumed due to a clear NDI radical anion band in the transient absorption spectrum. Noteworthy, the typical transient absorption band of the TAA radical cation is absent for D A-G1 in toluene. Bixon-Jortner analysis yielded a similar electronic coupling in D-A-G1 compared to the dyads. However, the charge recombination rate is smaller than of Db due to a more energetic CS state, which in the inverted region slows down charge recombination. In combination a singlet-triplet splitting similar to the dyads prolongs the CS state lifetime up to 14 us in diluted solution. Both effects result in an even better performance of D-A-G1 concerning energy conversion. D A-G1 is therefore a promising key structure for further studies on light harvesting applications. In a prospective study a second generation donor-acceptor dendrimer D-A-G2 might be an attractive structure accessible by "click reaction" of 13 and 8. D-A-G2 is expected to exhibit a downhill oriented gradient of CS states as assumed from the CV studies on G1-G3.}, subject = {Sternpolymere}, language = {en} }