@phdthesis{Rouziere2004, author = {Rouzi{\`e}re, Anne-Sophie}, title = {MODULATION OF THE B-CELL REPERTOIRE IN RHEUMATOID ARTHRITIS BY TRANSIENT B-CELL DEPLETION}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9290}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Although the role of B-cells in autoimmunity is not completely understood, their importance in the pathogenesis of autoimmune diseases has been more appreciated in the past few years. It is now well known that they have roles in addition to (auto) antibody production and are involved by different mechanisms in the regulation of T-cell mediated autoimmune disorders. The evolution of an autoimmune disease is a dynamic process, which takes a course of years during which complex immunoregulatory mechanisms shape the immune repertoire until the development of clinical disease. During this course, the B-cell repertoire itself is influenced and a change in the distribution of immunoglobulin heavy and light chain genes can be observed. B-cell depletive therapies have beneficial effects in patients suffering from rheumatoid arthritis (RA), highlighting also the central role of B-cells in the pathogenesis of this disease. Nevertheless, the mechanism of action is unclear. It has been hypothesised that B-cell depletion is able to reset deviated humoral immunity. Therefore we wanted to investigate if transient B-cell depletion results in changes of the peripheral B-cell receptor repertoire. To address this issue, expressed immunoglobulin genes of two patients suffering from RA were analysed; one patient for the heavy chain repertoire (patient H), one patient for the light chain repertoire (patient L). Both patients were treated with rituximab, an anti-CD20 monoclonal antibody that selectively depletes peripheral CD20+ B-cells for several months. The B-cell repertoire was studied before therapy and at the earliest time point after B-cell regeneration in both patients. A longer follow-up (up to 27 months) was performed in patient H who was treated a second time with rituximab after 17 months. Heavy chain gene analysis was carried out by nested-PCR on bulk DNA from peripheral B-cells using family-specific primers, followed by subcloning and sequencing. During the study, patient H received two courses of antibody treatment. B-cell depletion lasted 7 and 10 months, respectively and each time was accompanied by a clinical improvement. Anti-CD20 therapy induced two types of changes in this patient. During the early phase of B-cell regeneration, we noticed the presence of an expanded and recirculating population of highly mutated B-cells. These cells expressed very different immunoglobulin VH genes compared before therapy. They were class-switched and could be detected for a short period only. The long-term changes were more subtle. Nevertheless, characteristic changes in the VH2 family, as well as in specific mini-genes like VH3-23, 4-34 or 1-69 were noticed. Some of these genes have already been reported to be biased in autoimmune diseases. Also in autoimmune diseases, in particular in RA, clonal B-cells have been frequently found in the repertoire. B-cell depletion with anti-CD20 antibody resulted in a long term loss of clonal B-cells in patient H. Thus, temporary B-cell depletion induced significant changes in the heavy chain repertoire. For the light chain gene analysis, the repertoire changes were analysed separately for naive (CD27-) and memory (CD27+) B-cells. Individual CD19+ B-cells were sorted into CD27- and CD27+ cells and single cell RT-PCR was performed, followed by direct sequencing. During the study, patient L received one course of antibody treatment. B-cell depletion lasted 10 months and the light chain repertoire was studied before and after therapy. Before therapy, some differences in the distribution of VL and JL genes were observed between naive and memory B-cells. In particular, the predominant usage of Jk-proximal Vk genes by the CD27- naive B-cells indicated that the receptor editing was less frequent in this population compared to memory cells. In VlJl rearrangements also, some evidence for decreased receptor editing was noticed, with the overrepresentation of the Jl2/3 gene segments. The CDR3 regions of naive and memory cells showed different characteristics: the activity of the terminal deoxynucleotidyl transferase and exonuclease in Vl(5') side was greater in memory cells. Also in the light chain repertoire, we observed some changes induced by the B-cell depletive therapy. There was a tendency of a less frequent usage of Jk-proximal Vk genes in the naive population. Some Vl genes, previously described in autoimmune diseases and connected to rheumatoid factor activity, such as 3p, 3r, 1g, were not found after therapy. The different characteristics of the CDR3 regions of VlJl rearrangements were not observed anymore. Very significantly, the ratio Vk to Vl was shifted toward a greater usage of Vk genes in the naive population after therapy. Taken together, these results indicate that therapeutic transient B-cell depletion by anti-CD20 antibody therapy modulates the immunoglobulin gene repertoire in the two RA patients studied. Measurable changes were observed in the heavy chain as well as in the light chain repertoire, which may be relevant to the course of the disease. This also supports the notion that the composition of the B-cell repertoire is influenced by the disease and that B-cell depletion can reset biases that are typically found in autoimmune diseases.}, subject = {Rheumatoide Arthritis}, language = {en} } @phdthesis{Feuchtenberger2003, author = {Feuchtenberger, Martin}, title = {Etablierung einer Fluoreszenz-Multiplex-Polymerase-Ketten-Reaktion zur semiquantitativen und qualitativen Analyse des V H-Repertoires in humanen B-Lymphozyten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8426}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Mit der VH-Fluoreszenz-Multiplex-PCR steht ein neuartiges Screeningverfahren zur semiquantitativen und qualitativen Analyse der VH-Familienverteilung der schweren Kette des Immunglobulinmolek{\"u}ls in humanen B-Lymphozyten zur Verf{\"u}gung. In zwei Multiplex-PCRs werden IgH Produkte der sechs h{\"a}ufigsten VH-Familien mit familienspezifischen und fluoreszenzmarkierten Primern (FAM, HEX, NED und ROX) amplifiziert. Die Auftrennung der Produkte erfolgt durch Elektrophorese in einem ABI Prism 377 Sequencer. In verschiedenen Experimenten konnte die hohe Spezifit{\"a}t und Sensitivit{\"a}t der Methode, sowie die gute Reproduzierbarkeit, Reliabilit{\"a}t und Validit{\"a}t der Daten gezeigt werden. Die Analyse des VH-Repertoires gesunder Individuen (n=10) zeigte eine vergleichbare und zugleich charakteristische H{\"a}ufigkeitsverteilung der VH-Familien unter den Probanden, wie sie auch schon in anderen Studien beschrieben wurde. Die gewonnen Daten wurden ferner durch Sequenzierung von Produkten im Anschluss an eine Single-Cell PCR validiert. Mittels FMPCR konnte dar{\"u}ber hinaus die Existenz monoklonaler B-Lymphozyten bei Patienten mit CLL nachgewiesen werden. Erste Befunde bei Patienten mit Autoimmunerkrankungen zeigten in Einzelf{\"a}llen ein stark restringiertes B-Zellrepertoire. Die familienspezifische Markierung der Primer mit Fluoreszenzfarbstoffen erlaubt folglich neben der Absch{\"a}tzung der H{\"a}ufigkeitsverteilung der VH-Familien auch eine Aussage {\"u}ber die klonale Zusammensetzung des peripheren B-Lymphozytenpools sowie im Falle eines klonalen Peaks die unmittelbare Zuordnung zu einer der sechs VH-Familien. Die FMPCR stellt ein schnell und einfach durchzuf{\"u}hrendes, aber zugleich reliables Screeningverfahren zur Analyse des humanen VH-Repertoires bei Erkrankungen mit einer dominierenden Rolle von B-Lymphozyten dar. Dadurch wird es erstmals m{\"o}glich sein, gr{\"o}ßere Kollektive von Patienten mit Autoimmunerkrankungen bez{\"u}glich eines krankheitsspezifischen Repertoires zu untersuchen.}, language = {de} }