@phdthesis{Wongkaew2015, author = {Wongkaew, Suttida}, title = {On the control through leadership of multi-agent systems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120914}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The investigation of interacting multi-agent models is a new field of mathematical research with application to the study of behavior in groups of animals or community of people. One interesting feature of multi-agent systems is collective behavior. From the mathematical point of view, one of the challenging issues considering with these dynamical models is development of control mechanisms that are able to influence the time evolution of these systems. In this thesis, we focus on the study of controllability, stabilization and optimal control problems for multi-agent systems considering three models as follows: The first one is the Hegselmann Krause opinion formation (HK) model. The HK dynamics describes how individuals' opinions are changed by the interaction with others taking place in a bounded domain of confidence. The study of this model focuses on determining feedback controls in order to drive the agents' opinions to reach a desired agreement. The second model is the Heider social balance (HB) model. The HB dynamics explains the evolution of relationships in a social network. One purpose of studying this system is the construction of control function in oder to steer the relationship to reach a friendship state. The third model that we discuss is a flocking model describing collective motion observed in biological systems. The flocking model under consideration includes self-propelling, friction, attraction, repulsion, and alignment features. We investigate a control for steering the flocking system to track a desired trajectory. Common to all these systems is our strategy to add a leader agent that interacts with all other members of the system and includes the control mechanism. Our control through leadership approach is developed using classical theoretical control methods and a model predictive control (MPC) scheme. To apply the former method, for each model the stability of the corresponding linearized system near consensus is investigated. Further, local controllability is examined. However, only in the Hegselmann-Krause opinion formation model, the feedback control is determined in order to steer agents' opinions to globally converge to a desired agreement. The MPC approach is an optimal control strategy based on numerical optimization. To apply the MPC scheme, optimal control problems for each model are formulated where the objective functions are different depending on the desired objective of the problem. The first-oder necessary optimality conditions for each problem are presented. Moreover for the numerical treatment, a sequence of open-loop discrete optimality systems is solved by accurate Runge-Kutta schemes, and in the optimization procedure, a nonlinear conjugate gradient solver is implemented. Finally, numerical experiments are performed to investigate the properties of the multi-agent models and demonstrate the ability of the proposed control strategies to drive multi-agent systems to attain a desired consensus and to track a given trajectory.}, subject = {Mehragentensystem}, language = {en} } @phdthesis{KuhnAndriotti2009, author = {Kuhn Andriotti, Gustavo}, title = {Prospect Theory Multi-Agent Based Simulations for Non-Rational Route Choice Decision Making Modelling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40483}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Simulations (MASim) and non-rational behaviour. This non-rational behaviour is here based on the Prospect Theory [KT79] (PT), which is compared to the rational behaviour in the Expected Utility Theory [vNM07] (EUT). This model was used to design a modified Q-Learning [Wat89, WD92] algorithm. The PT based Q-Learning was then integrated into a proposed agent architecture. Because much attention is given to a limited interpretation of Simon's definition of bounded-rationality, this interpretation is broadened here. Both theories, rationality and the non-rationality, are compared and the discordance in their results discussed. The main contribution of this work is to show that an alternative is available to the EUT that is more suitable for human decision-makers modelling. The evidences show that rationality is not appropriated for modelling persons. Therefore, instead of fine-tuning the existent model the use of another one is proposed and evaluated. To tackle this, the route choice problem was adopted to perform the experiments. To evaluate the proposed model three traffic scenarios are simulated and their results analysed.}, subject = {Mehragentensystem}, language = {en} } @phdthesis{Oeffner2008, author = {Oeffner, Marc}, title = {AGENT-BASED KEYNESIAN MACROECONOMICS - An Evolutionary Model Embedded in an Agent-Based Computer Simulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39277}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Subject of the present study is the agent-based computer simulation of Agent Island. Agent Island is a macroeconomic model, which belongs to the field of monetary theory. Agent-based modeling is an innovative tool that made much progress in other scientific fields like medicine or logistics. In economics this tool is quite new, and in monetary theory to this date virtual no agent-based simulation model has been developed. It is therefore the topic of this study to close this gap to some extend. Hence, the model integrates in a straightforward way next to the common private sectors (i.e. households, consumer goods firms and capital goods firms) and as an innovation a banking system, a central bank and a monetary circuit. Thereby, the central bank controls the business cycle via an interest rate policy; the according mechanism builds on the seminal idea of Knut Wicksell (natural rate of interest vs. money rate of interest). In addition, the model contains also many Keynesian features and a flow-of-funds accounting system in the tradition of Wolfgang St{\"u}tzel. Importantly, one objective of the study is the validation of Agent Island, which means that the individual agents (i.e. their rules, variables and parameters) are adjusted in such a way that on the aggregate level certain phenomena emerge. The crucial aspect of the modeling and the validation is therefore the relation between the micro and macro level: Every phenomenon on the aggregate level (e.g. some stylized facts of the business cycle, the monetary transmission mechanism, the Phillips curve relationship, the Keynesian paradox of thrift or the course of the business cycle) emerges out of individual actions and interactions of the many thousand agents on Agent Island. In contrast to models comprising a representative agent, we do not apply a modeling on the aggregate level; and in contrast to orthodox GE models, true interaction between heterogeneous agents takes place (e.g. by face-to-face-trading).}, subject = {Mehragentensystem}, language = {en} }