@phdthesis{Orth2021, author = {Orth, Barbara}, title = {Identification of an atypical peptide binding mode of the BTB domain of the transcription factor MIZ1 with a HUWE1-derived peptide}, doi = {10.25972/OPUS-25044}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250447}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Ubiquitination is a posttranslational modification with immense impact on a wide range of cellular processes, including proteasomal degradation, membrane dynamics, transcription, translation, cell cycle, apoptosis, DNA repair and immunity. These diverse functions stem from the various ubiquitin chain types, topologies, and attachment sites on substrate proteins. Substrate recruitment and modification on lysine, serine or threonine residues is catalyzed by ubiquitin ligases (E3s). An important E3 that decides about the fate of numerous substrates is the HECT-type ubiquitin ligase HUWE1. Depending on the substrate, HUWE1 is involved in different processes, such as cell proliferation and differentiation, DNA repair, and transcription. One of the transcription factors that is ubiquitinated by HUWE1 is the MYC interacting zinc finger protein 1 (MIZ1). MIZ1 is a BTB/POZ (Bric-{\`a}-brac, Tramtrack and Broad-Complex/Pox virus and zinc finger) zinc finger (ZF) protein that binds to DNA through its 13 C2H2-type zinc fingers and either activates or represses the transcription of target genes, including genes involved in cell cycle arrest, such as P21CIP1 (CDKN1A). The precise functions of MIZ1 depend on its interactions with the MYC-MAX heterodimer, but also its heterodimerization with other BTB-ZF proteins, such as BCL6 or NAC1. How MIZ1 interacts with HUWE1 has not been studied and, as a consequence, it has not been possible to rationally develop tools to manipulate this interaction with specificity in order to better understand the effects of the interaction on the transcriptional function of MIZ1 on target genes or processes downstream. One aspect of my research, therefore, aimed at characterizing the MIZ1-HUWE1 interaction at a structural level. I determined a crystal structure of the MIZ1-BTB-domain in complex with a peptide, referred to as ASC, derived from a C terminal region of HUWE1, previously named 'activation segment'. The binding mode observed in this crystal structure could be validated by binding and activity assays in vitro and by cell-based co-IP experiments in the context of N-terminally truncated HUWE1 constructs. I was not able to provide unambiguous evidence for the identified binding mode in the context of full-length HUWE1, indicating that MIZ1 recognition by HUWE1 requires yet unknown regions in the cell. While the structural details of the MIZ1-HUWE1 interaction remains to be elucidated in the context of the full-length proteins, the binding mode between MIZ1BTB and ASC revealed an interesting, atypical structural feature of the BTB domain of MIZ1 that, to my knowledge, has not been described for other BTB-ZF proteins: The B3 region in MIZ1BTB is conformationally malleable, which allows for a HUWE1-ASC-peptide-mediated β-sheet extension of the upper B1/B2-strands, resulting in a mixed, 3 stranded β-sheet. Such β-sheet extension does not appear to occur in other homo- or heterodimeric BTB-ZF proteins, including MIZ1-heterodimers, since these proteins typically possess a pre-formed B3-strand in at least one subunit. Instead, BCL6 co repressor-derived peptides (SMRT and BCOR) were found to extend the lower β-sheet in BCL6BTB by binding to an adjacent 'lateral groove'. This interaction follows a 1:1 stoichiometry, whereas the MIZ1BTB-ASC-complex shows a 2:1 stoichiometry. The crystal structure of the MIZ1BTB-ASC-complex I determined, along with comparative binding studies of ASC with monomeric, homodimeric, and heterodimeric MIZ1BTB variants, respectively, suggests that ASC selects for MIZ1BTB homodimers. The structural data I generated may serve as an entry point for the prediction of additional interaction partners of MIZ1 that also have the ability to extend the upper β-sheet of MIZ1BTB. If successful, such interaction partners and structures thereof might aid the design of peptidomimetics or small-molecule inhibitors of MIZ1 signaling. Proof-of-principle for such a structure-guided approach targeting BTB domains has been provided by small-molecule inhibitors of BCL6BTB co-repressors interactions. If a similar approach led to molecules that interfere with specific interactions of MIZ1, they would provide intriguing probes to study MIZ1 biology and may eventually allow for the development of MIZ1-directed cancer therapeutics.}, subject = {Ubiquitin}, language = {en} } @phdthesis{Dunkel2013, author = {Dunkel, Nico}, title = {Regulation of virulence-associated traits of the human fungal pathogen Candida albicans by nitrogen availability}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83076}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Nitrogen-regulated pathogenesis describes the expression of virulence attributes as direct response to the quantity and quality of an available nitrogen source. As consequence of nitrogen availability, the opportunistic human fungal pathogen Candida albicans changes its morphology and secretes aspartic proteases [SAPs], both well characterized virulence attributes. C. albicans, contrarily to its normally non-pathogenic relative Saccharomyces cerevisiae, is able to utilize proteins, which are considered as abundant and important nitrogen source within the human host. To assimilate complex proteinaceous matter, extracellular proteolysis is followed by uptake of the degradation products through dedicated peptide transporters (di-/tripeptide transporters [PTRs] and oligopeptide transporters [OPTs]). The expression of both traits is transcriptionally controlled by Stp1 - the global regulator of protein utilization - in C. albicans. The aim of the present study was to elucidate the regulation of virulence attributes of the pathogenic fungus C. albicans by nitrogen availability in more detail. Within a genome wide binding profile of Stp1, during growth with proteins, more than 600 Stp1 target genes were identified, thereby confirming its role in the usage of proteins, but also other nitrogenous compounds as nitrogen source. Moreover, the revealed targets suggest an involvement of Stp1 in the general adaption to nutrient availability as well as in the environmental stress response. With the focus on protein utilization and nitrogen-regulated pathogenesis, the regulation of the major secreted aspartic protease Sap2 - additionally one of the prime examples of allelic heterogeneity in C. albicans - was investigated in detail. Thereby, the heterogezygous SAP2 promoter helped to identify an unintended genomic alteration as the true cause of a growth defect of a C. albicans mutant. Additionally, the promoter region, which was responsible for the differential activation of the SAP2 alleles, was delimited. Furthermore, general Sap2 induction was demonstrated to be mediated by distinct cis-acting elements that are required for a high or a low activity of SAP2 expression. For the utilization of proteins as nitrogen source it is also crucial to take up the peptides that are produced by extracellular proteolysis. Therefore, the function and importance of specific peptide transporters was investigated in C. albicans mutants, unable to use peptides as nitrogen source (opt1Δ/Δ opt2Δ/Δ opt3Δ/Δ opt4Δ/Δ opt5Δ/Δ ptr2Δ/Δ ptr22Δ/Δ septuple null mutants). The overexpression of individual transporters in these mutants revealed differential substrate specificities and expanded the specificity of the OPTs to dipeptides, a completely new facet of these transporters. The peptide-uptake deficient mutants were further used to elucidate, whether indeed proteins and peptides are an important in vivo nitrogen source for C. albicans. It was found that during competitive colonization of the mouse intestine these mutants exhibited wild-type fitness, indicating that neither proteins nor peptides are primary nitrogen sources required to efficiently support growth of C. albicans in the mouse gut. Adequate availability of the preferred nitrogen source ammonium represses the utilization of proteins and other alternative nitrogen sources, but also the expression of virulence attributes, like Sap secretion and nitrogen-starvation induced filamentation. In order to discriminate, whether ammonium availability is externally sensed or determined inside the cell by C. albicans, the response to exterior ammonium concentrations of ammonium-uptake deficient mutants (mep1Δ/Δ mep2Δ/Δ null mutants) was investigated. This study showed that presence of an otherwise suppressing ammonium concentration did not inhibit Sap2 proteases secretion and arginine-induced filamentation in these mutants. Conclusively, ammonium availability is primarily determined inside the cell in order to control the expression of virulence traits. In sum, the present work contributes to the current understanding of how C. albicans regulates expression of virulence-associated traits in response to the presence of available nitrogen sources - especially proteins and peptides - in order to adapt its lifestyle within a human host.}, subject = {Candida albicans}, language = {en} }