@article{daSilvaSeiffertTovote2023, author = {da Silva, Gabriela Neubert and Seiffert, Nina and Tovote, Philip}, title = {Cerebellar contribution to the regulation of defensive states}, series = {Frontiers in Systems Neuroscience}, volume = {17}, journal = {Frontiers in Systems Neuroscience}, doi = {10.3389/fnsys.2023.1160083}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311620}, year = {2023}, abstract = {Despite fine tuning voluntary movement as the most prominently studied function of the cerebellum, early human studies suggested cerebellar involvement emotion regulation. Since, the cerebellum has been associated with various mood and anxiety-related conditions. Research in animals provided evidence for cerebellar contributions to fear memory formation and extinction. Fear and anxiety can broadly be referred to as defensive states triggered by threat and characterized by multimodal adaptations such as behavioral and cardiac responses integrated into an intricately orchestrated defense reaction. This is mediated by an evolutionary conserved, highly interconnected network of defense-related structures with functional connections to the cerebellum. Projections from the deep cerebellar nucleus interpositus to the central amygdala interfere with retention of fear memory. Several studies uncovered tight functional connections between cerebellar deep nuclei and pyramis and the midbrain periaqueductal grey. Specifically, the fastigial nucleus sends direct projections to the ventrolateral PAG to mediate fear-evoked innate and learned freezing behavior. The cerebellum also regulates cardiovascular responses such as blood pressure and heart rate-effects dependent on connections with medullary cardiac regulatory structures. Because of the integrated, multimodal nature of defensive states, their adaptive regulation has to be highly dynamic to enable responding to a moving threatening stimulus. In this, predicting threat occurrence are crucial functions of calculating adequate responses. Based on its role in prediction error generation, its connectivity to limbic regions, and previous results on a role in fear learning, this review presents the cerebellum as a regulator of integrated cardio-behavioral defensive states.}, language = {en} } @article{StegmannAndreattaWieser2023, author = {Stegmann, Yannik and Andreatta, Marta and Wieser, Matthias J.}, title = {The effect of inherently threatening contexts on visuocortical engagement to conditioned threat}, series = {Psychophysiology}, volume = {60}, journal = {Psychophysiology}, number = {4}, doi = {10.1111/psyp.14208}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312465}, year = {2023}, abstract = {Fear and anxiety are crucial for adaptive responding in life-threatening situations. Whereas fear is a phasic response to an acute threat accompanied by selective attention, anxiety is characterized by a sustained feeling of apprehension and hypervigilance during situations of potential threat. In the current literature, fear and anxiety are usually considered mutually exclusive, with partially separated neural underpinnings. However, there is accumulating evidence that challenges this distinction between fear and anxiety, and simultaneous activation of fear and anxiety networks has been reported. Therefore, the current study experimentally tested potential interactions between fear and anxiety. Fifty-two healthy participants completed a differential fear conditioning paradigm followed by a test phase in which the conditioned stimuli were presented in front of threatening or neutral contextual images. To capture defense system activation, we recorded subjective (threat, US-expectancy), physiological (skin conductance, heart rate) and visuocortical (steady-state visual evoked potentials) responses to the conditioned stimuli as a function of contextual threat. Results demonstrated successful fear conditioning in all measures. In addition, threat and US-expectancy ratings, cardiac deceleration, and visuocortical activity were enhanced for fear cues presented in threatening compared with neutral contexts. These results are in line with an additive or interactive rather than an exclusive model of fear and anxiety, indicating facilitated defensive behavior to imminent danger in situations of potential threat.}, language = {en} }