@phdthesis{Berghoff2002, author = {Berghoff, Stefanie M.}, title = {Sociobiology of the hypogaeic army ant Dorylus (Dichthadia) laevigatus Fr. Smith}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-5005}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Originally renowned for their spectacular epigaeic raids, army ants have captured scientific attention for almost two centuries. They now belong to one of the best studied group of ants. However, most of our knowledge about army ants was derived from the study of the minority of specialized, epigaeicly active species. These species evolved probably rather recently from hypogaeic ancestors. The majority of army ant species still leads a hypogaeic life and is almost completely unknown in its entire sociobiology. It thus remained speculative, whether the assumed 'general' characteristics of army ants represent an adaptation to epigaeic activity or apply also to the majority of hypogaeic species. Based on the recent observation that the hypogaeic Asian army ant Dorylus (Dichthadia) laevigatus recruits predictably to palm oil baits, I developed and tested an oil-baiting method for the study of hypogaeic (army)ants. Prior to my study, nothing was known about the sociobiology of the assumed rare D. laevigatus. Throughout my work, I showed D. laevigatus to be very common and abundant in a wide range of habitats in West-Malaysia and on Borneo. Investigating its foraging behavior, I revealed D. laevigatus to differ from epigaeicly active species in several ways. Never demonstrated for any of the epigaeic species, D. laevigatus established stable trunk trail systems. Such a trail system contradicted the perception of army ant foraging, which was believed to be characterized by raids with constantly alternating trail directions. The trunk trail system further enabled a near omnipresence of D. laevigatus within its foraging area, which was also believed to be atypical for an army ant. Raids differed in structure and composition of participating workers from those of epigaeic species. Also, bulky food sources could be exploited over long periods of time. The foraging system of D. laevigatus resembled in several ways that of e.g. leaf-cutter and harvester ants. Likewise contrary to the assumptions, D. laevigatus had a wide food spectrum and showed only little effect on local arthropod communities, even falling itself prey to other ants. Strong aggressive behavior was observed only towards ant species with similar lifestyles, enabling me to provide the first detailed documentation of interspecific fights between two sympatric Dorylus species. Similar to foraging habits or ecological impact, nothing was known about colony size and composition, nesting habits, or worker polymorphism for D. laevigatus or any other hypogaeic Dorylus species prior to my work. By observing and eventually excavating a colony, I showed D. laevigatus to have a much smaller colony size and to lack the large sized workers of epigaeic Dorylus species. Similar to epigaeic Dorylinae, I showed D. laevigatus to have a non-phasic brood production, to emigrate rarely, and to alter its nest form along with habitat conditions. Detailed morphological and geographical descriptions give an impression of the Asian Dorylus species and are expected to aid other researchers in the difficult species identification. The genetic analysis of a male collected at a light trap demonstrated its relation to D. laevigatus. Confirming the male and queen associations, D. laevigatus is now one of five Dorylus species (out of a total of 61), for which all castes are known. In cooperation with D. Kistner, I provide a morphological and taxonomical description of nine Coleopteran beetles associated with D. laevigatus. Behavioral observations indicated the degree of their integration into the colony. The taxonomic position of the beetles further indicated that D. laevigatus emigrated from Africa to Asia, and was accompanied by the majority of associated beetles. The diversity of D. laevigatus guests, which included a number of unidentified mites, was rather low compared to that of epigaeic species. Overall, I demonstrated the developed baiting containers to effectively enable the study of hypogaeic ants. I showed several other hypogaeic ant species to be undersampled by other methods. Furthermore, the method enabled me to documented a second hypogaeic Dorylus species on Borneo. A detailed description of this species' morphology, ecology, and interactions with D. laevigatus is provided. My study indicated D. laevigatus to be an ecologically important species, able to influence soil structure and organisms of tropical regions in many ways. Relating the observed traits of D. laevigatus to epigaeicly active species, I conclude that our assumption of 'general' army ant behavior is erroneous in several aspects and needs to be changed. The oil-baiting method finally provides a tool enabling the location and study of hypogaeic (army)ant species. This opens a broad field for future studies on this cryptic but nonetheless important group of ants.}, subject = {Borneo}, language = {en} } @phdthesis{Thom2002, author = {Thom, Corinna}, title = {Dynamics and Communication Structures of Nectar Foraging in Honey Bees (Apis mellifera)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3601}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {In this thesis, I examined honey bee nectar foraging with emphasis on the communication system. To document how a honey bee colony adjusts its daily nectar foraging effort, I observed a random sample of individually marked workers during the entire day, and then estimated the number and activity of all nectar foragers in the colony. The total number of active nectar foragers in a colony changed frequently between days. Foraging activity did not usually change between days. A honey bee colony adjusts its daily foraging effort by changing the number of its nectar foragers rather than their activity. I tested whether volatiles produced by a foraging colony activated nectar foragers of a non-foraging colony by connecting with a glass tube two colonies. Each colony had access to a different green house. In 50\% of all experiments, volatile substances from the foraging colony stimulated nectar foragers of the non-foraging colony to fly to an empty feeder. The results of this study show that honey bees can produce a chemical signal or cue that activates nectar foragers. However, more experiments are needed to establish the significance of the activating volatiles for the foraging communication system. The brief piping signal of nectar foragers inhibits forager recruitment by stopping waggle dances (Nieh 1993, Kirchner 1993). However, I observed that many piping signals (approximately 43\%) were produced off the dance floor, a restricted area in the hive where most waggle dances are performed. If the inhibition of waggle dances would be the only function of the brief piping signal, tremble dancers should produce piping signals mainly on the dance floor, where the probability to encounter waggle dancers is highest. To therefore investigate the piping signal in more detail, I experimentally established the foraging context of the brief piping signal, characterized its acoustic properties, and documented for the first time the unique behavior of piping nectar foragers by observing foragers throughout their entire stay in the hive. Piping nectar foragers usually began to tremble dance immediately upon their return into the hive, spent more time in the hive, more time dancing, had longer unloading latencies, and were the only foragers that sometimes unloaded their nectar directly into cells instead of giving it to a nectar receiver bee. Most of the brief piping signals (approximately 99\%) were produced by tremble dancers, yet not all tremble dancers (approximately 48\%) piped. This suggests that piping and tremble dancing have related, but not identical functions in the foraging system. Thus, the brief piping signals may not only inhibit forager recruitment, but have an additional function both on and off the dance floor. In particular, the piping signal might function 1. to stop the recruitment of additional nectar foragers, and 2. as a modulatory signal to alter the response threshold of signal receivers to the tremble dance. The observation that piping tremble dancers often did not experience long unloading delays before they started to dance gave rise to a question. A forager's unloading delay provides reliable information about the relative work capacities of nectar foragers and nectar receivers, because each returning forager unloads her nectar to a nectar receiver before she takes off for the next foraging trip. Queuing delays for either foragers or receivers lower foraging efficiency and can be eliminated by recruiting workers to the group in shortage. Short unloading delays indicate to the nectar forager a shortage of foragers and stimulate waggle dancing which recruits nectar foragers. Long unloading delays indicate a shortage of nectar receivers and stimulate tremble dancing which recruits nectar receivers (Seeley 1992, Seeley et al. 1996). Because the short unloading delays of piping tremble dancers indicated that tremble dancing can be elicited by other factors than long unloading delays, I tested whether a hive-external stimulus, the density of foragers at the food source, stimulated tremble dancing directly. The experiments show that tremble dancing can be caused directly by a high density of foragers at the food source and suggest that tremble dancing can be elicited by a decrease of foraging efficiency either inside (e.g. shortage of receiver bees) or outside (e.g. difficulty of loading nectar) the hive. Tremble dancing as a reaction to hive-external stimuli seems to occur under natural conditions and can thus be expected to have some adaptive significance. The results imply that if the hive-external factors that elicit tremble dancing do not indicate a shortage of nectar receiver bees in the hive, the function of the tremble dance may not be restricted to the recruitment of additional nectar receivers, but might be the inhibition or re-organization of nectar foraging.}, subject = {Bienen }, language = {en} } @phdthesis{Dornhaus2002, author = {Dornhaus, Anna}, title = {The role of communication in the foraging process of social bees}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3468}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {In the various groups of social bees, different systems of communication about food sources occur. These communication systems are different solutions to a common problem of social insects: efficiently allocating the necessary number of workers first to the task of foraging and second to the most profitable food sources. The solution chosen by each species depends on the particular ecological circumstances as well as the evolutionary history of that species. For example, the outstanding difference between the bumble bee and the honey bee system is that honey bees can communicate the location of profitable food sources to nestmates, which bumble bees cannot. To identify possible selection pressures that could explain this difference, I have quantified the benefits of communicating location in honey bees. I show that these strongly depend on the habitat, and that communicating location might not benefit bees in temperate habitats. This could be due to the differing spatial distributions of resources in different habitats, in particular between temperate and tropical regions. These distributions may be the reason why the mostly temperate-living bumble bees have never evolved a communication system that allows them to transfer information on location of food sources, whereas most tropical social bees (all honey bees and many stingless bees) are able to recruit nestmates to specific points in their foraging range. Nevertheless, I show that in bumble bees the allocation of workers to foraging is also regulated by communication. Successful foragers distribute in the nest a pheromone which alerts other bees to the presence of food. This pheromone stems from a tergite gland, the function of which had not been identified previously. Usage of a pheromone in the nest to alert other individuals to forage has not been described in other social insects, and might constitute a new mode of communicating about food sources. The signal might be modulated depending on the quality of the food source. Bees in the nest sample the nectar that has been brought into the nest. Their decision whether to go out and forage depends not only on the pheromone signal, but also on the quality of the nectar they have sampled. In this way, foraging activity of a bumble bee colony is adjusted to foraging conditions, which means most bees are allocated to foraging only if high-quality food sources are available. In addition, foraging activity is adjusted to the amount of food already stored. In a colony with full honeypots, no new bees are allocated to foraging. These results help us understand how the allocation of workers to the task of food collection is regulated according to external and internal nest conditions in bumble bees.}, subject = {Hummel}, language = {en} } @phdthesis{Roeschard2002, author = {R{\"o}schard, Jacqueline}, title = {Cutter, carriers and bucket brigades ...}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-2240}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {This study investigates the foraging behaviour of grass-cutting ants, Atta vollenweideri, with specific consideration of the following issues: (a) cutting behaviour and the determination of fragment size, (b) the effect of load size on transport economics, (c) division of labour and task-partitioning. Grass-cutting ants, Atta vollenweideri, harvest grass fragments that serve as substrate for the cultivation of a symbiotic fungus. Foragers were observed to cut grass fragments across the blade, thus resulting in longish, rectangular-shaped fragments in contrast to the semicircular fragments of leaf-cutting ants. Cutting was very time-consuming: In tough grasses like the typical grassland species Paspallum intermedium and Cyperus entrerrianus, cutting times lasted up to more than 20 minutes per fragment and roughly half of all initiated cutting attempts were given up by the ants. Foragers harvesting the softer grass Leersia hexandra were smaller than those foraging on the hard grasses. Fragment size determination and the extent of size-matching between ant body size and fragment size was investigated regarding possible effects of tissue toughness on decision-making and as a function of the distance from the nest. Tissue toughness affected decision-making such that fragment width correlated with ant body mass for the hard grass but not for the soft one, suggesting that when cutting is difficult, larger ants tend to select wider grasses to initiate cutting. The length of the fragments cut out of the two grass species differed statistically, but showed a large overlap in their distribution. Distance from the nest affected load size as well as the extent of size-matching: Fragments collected directly after cutting were significantly larger than those carried on the trail. This indicates that fragments were cut once again on their way to the nest. Size-matching depended on the trail sector considered, and was stronger in ants sampled closer to the nest, suggesting that carriers either cut fragments in sizes corresponding to their body mass prior transport, or transferred them to nestmates of different size after a short carrying distance. During transport, a worker takes a fragment with its mandibles at one end and carries it in a more or less vertical position. Thus, load length might particularly affect maneuverability, because of the marked displacement of the gravitational center. Conversely, based on the energetic of cutting, workers might maximise their individual harvesting rate by cutting long grass fragments, since the longer a grass fragment, the larger is the amount of material harvested per unit cutting effort. I therefore investigated the economics of load transport by focusing on the effects of load size (mass and length) on gross material transport rate to the nest. When controlling for fragment mass, both running speed of foragers and gross material transport rate was observed to be higher for short fragments. In contrast, if fragment mass was doubled and length maintained, running speed differed according to the mass of the loads, with the heavier fragments being transported at the lower pace. For the sizes tested, heavy fragments yielded a higher transport rate in spite of the lower speed of transport, as they did not slow down foragers so much that it counterbalanced the positive effects of fragment mass on material transport rate. The sizes of the fragments cut by grass-cutting ants under natural conditions therefore may represent the outcome of an evolutionary trade-off between maximising harvesting rate at the cutting site and minimising the effects of fragment size on material transport rates. I investigated division of labour and task partitioning during foraging by recording the behaviour of marked ants while cutting, and by monitoring the transport of fragments from the cutting until they reached the nest. A. vollenweideri foragers showed division of labour between cutting and carrying, with larger workers cutting the fragments, and smaller ones transporting them. This division was absent for food sources very close to the nest, when no physical trail was present. Along the trail, the transport of fragment was a partitioned task, i.e., workers formed bucket brigades composed of 2 to 5 carriers. This sequential load transport occurred more often on long than on short trails. The first carriers of a bucket brigade covered only short distances before dropping their fragments, turned back and continued foraging at the same food source. The last carriers covered the longest distance. There was no particular location on the trail for load dropping , i.e., fragments were not cached. I tested the predictions of two hypotheses about the causes of bucket brigades: First, bucket brigades might occur because of load-carriage effects: A load that is too big for an ant to be carried is dropped and carried further by nestmates. Second, fragments carried by bucket brigades might reach the nest quicker than if they are transported by a single carrier. Third, bucket brigades might enhance information flow among foragers: By transferring the load a worker may return earlier back to the foraging site and be able to reinforce the chemical trail, thus recruitment. In addition, the dropped fragment itself may contain information for unladen foragers about currently harvested sources and may enable them to choose between sources of different quality. I investigated load-carriage effects and possible time-saving by presenting ants with fragments of different but defined sizes. Load size did not affect frequency of load dropping nor the distance the first carrier covered before dropping, and transport time by bucket brigades was significantly longer than by single carriers. In order to study the information transfer hypothesis, I presented ants with fragments of different attractivity but constant size. Ants carrying high-quality fragments would be expected to drop them more often than workers transporting low-quality fragments, thus increasing the frequency of bucket brigades. My results show that increasing load quality increased the frequency of bucket brigades as well as it decreased the carrying distance of the first carrier. In other words, more attractive loads were dropped more frequently and after a shorter distance than less attractive ones with the first carriers returning to the foraging site to continue foraging. Summing up, neither load-carriage effects nor time-saving caused the occurrence of bucket brigades. Rather, the benefit might be found at colony level in an enhanced information flow.}, subject = {Atta}, language = {en} }