@phdthesis{Bercx2014, author = {Bercx, Martin Helmut}, title = {Numerical studies of heavy-fermion systems and correlated topological insulators}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116138}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In this thesis, we investigate aspects of the physics of heavy-fermion systems and correlated topological insulators. We numerically solve the interacting Hamiltonians that model the physical systems using quantum Monte Carlo algorithms to access both ground-state and finite-temperature observables. Initially, we focus on the metamagnetic transition in the Kondo lattice model for heavy fermions. On the basis of the dynamical mean-field theory and the dynamical cluster approximation, our calculations point towards a continuous transition, where the signatures of metamagnetism are linked to a Lifshitz transition of heavy-fermion bands. In the second part of the thesis, we study various aspects of magnetic pi fluxes in the Kane-Mele-Hubbard model of a correlated topological insulator. We describe a numerical measurement of the topological index, based on the localized mid-gap states that are provided by pi flux insertions. Furthermore, we take advantage of the intrinsic spin degree of freedom of a pi flux to devise instances of interacting quantum spin systems. In the third part of the thesis, we introduce and characterize the Kane-Mele-Hubbard model on the pi flux honeycomb lattice. We place particular emphasis on the correlations effects along the one-dimensional boundary of the lattice and compare results from a bosonization study with finite-size quantum Monte Carlo simulations.}, subject = {Schwere-Fermionen-System}, language = {en} }