@article{BuderLapaKreissletal.2014, author = {Buder, Kristina and Lapa, Constantin and Kreissl, Michael C. and Schirbel, Andreas and Herrmann, Ken and Schnack, Alexander and Br{\"o}cker, Eva-Bettina and Goebeler, Matthias and Buck, Andreas K. and Becker, J{\"u}rgen C.}, title = {"Somatostatin receptor expression in Merkel cell carcinoma as target for molecular imaging"}, doi = {10.1186/1471-2407-14-268}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110326}, year = {2014}, abstract = {Background Merkel cell carcinoma (MCC) is a rare cutaneous neoplasm with increasing incidence, aggressive behavior and poor prognosis. Somatostatin receptors (SSTR) are expressed in MCC and represent a potential target for both imaging and treatment. Methods To non-invasively assess SSTR expression in MCC using PET and the radiotracers [68Ga]DOTA-D-Phe1-Tyr3-octreotide (DOTATOC) or -octreotate (DOTATATE) as surrogate for tumor burden. In 24 patients with histologically proven MCC SSTR-PET was performed and compared to results of computed tomography (CT). Results SSTR-PET detected primary and metastatic MCC lesions. On a patient-based analysis, sensitivity of SSTR-PET was 73\% for nodal metastases, 100\% for bone, and 67\% for soft-tissue metastases, respectively. Notably, brain metastases were initially detected by SSTR-PET in 2 patients, whereas liver and lung metastases were diagnosed exclusively by CT. SSTR-PET showed concordance to CT results in 20 out of 24 patients. Four patients (17\%) were up-staged due to SSTR-PET and patient management was changed in 3 patients (13\%). Conclusion SSTR-PET showed high sensitivity for imaging bone, soft tissue and brain metastases, and particularly in combination with CT had a significant impact on clinical stage and patient management.}, language = {en} } @phdthesis{Li2014, author = {Li, Xiang}, title = {Molecular imaging of inflammation in atherosclerosis: Preclinical study in Apolipoprotein E-Deficient mice and preliminary evaluation in human using positron emission tomography}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-104622}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Motivation and Aim: Cardiovascular disease has been the leading cause of mortality and morbidity throughout the world. In developed countries, cardiovascular diseases are already responsible for a majority of deaths and will become the pre-eminent health problem worldwide (1,2). Rupture of atherosclerotic plaque accounts for approximately 70\% of fatal acute myocardial infarction and sudden heart deaths. Conventional criterias for the diagnosis of "vulnerable plaques" are calcified nodules, yellow appearance of plaque, a thin cap, a large lipid core, severe luminal stenosis, intraplaque hemorrhage, inflammation, thrombogenicity, and plaque injury (3-5). Noninvasive diagnosis of vulnerable plaque still remains a great challenge and a huge research prospect, which triggered us to investigate the feasibility of PET imaging on the evaluation of atherosclerosis. Nuclear imaging of atherosclerosis, especially co-registered imaging modalities, could provide a promising diagnostic tool including both anatomy and activities to identify vulnerable atherosclerotic plaque or early detection of inflammatory endothelium at risk. Furthermore, the development of specific imaging tracers for clinical applications is also a challenging task. The aim of this work was to assess the potential of novel PET imaging probes associated with intra-plaque inflammation on animal models and in human respectively. Methods In this work, several molecular imaging modalities were employed for evaluation of atherosclerosis. They included Positron emission tomography / Computed tomography (PET/CT) for human studies, and micro-PET, autoradiography and high-resolution magnetic resonance imaging (MRI) for animal studies. Radiotracers for PET imaging included the glucose analogue 18F-Fluorodeoxyglucose (18F-FDG), the somatostatin receptor avide tracer 68Ga-DOTATATE, and the Gallium-68 labeled fucoidan (68Ga-Fucoidan), which was developed as a PET tracer to detect endothelial P-selectin, which overexpressed at early stage of atherosclerosis and endothelial overlying activated plaque. Tracer's capabilities were firstly assessed on cellular level in vitro. Subsequently, Animal studies were conducted in two animal models: 1, Apolipoprotein E (ApoE-/-) mice having severe atherosclerotic plaque; 2, Lipopolysaccharide (LPS) -induced mice for receiving acute vascular inflammation. Corresponding analyses on protein and histological level were conducted as well to confirm our results. In human study, 16 patients with neuroendocrine tumors (NETs) were investigated on imaging vascular inflammation. These patients had undergone both 68Ga-DOTATATE PET/CT and 18F-FDG PET/CT for staging or restaging within 6 weeks. 16 patients were randomized into two groups: high-risk group and low-risk group. Uptake ratio of both tracers from two groups were compared and correlated with common cardiovascular risk factors. Results and Conclusion In murine study, the expression of somatostatin receptor 2, which is the main bio-target of 68Ga-DOTATATE on macrophage/monocyte was confirmed by flow cytometry and immunohistochemistry. Prospectively, high specific accumulation of 68Ga-DOTATATE to the macrophage within the plaques was observed in aorta lesions by autoradiography and by micro-PET. In study with 68Ga-fucoidan, a strong expression of P-selectin on active endothelium overlying on inflamed plaque but weaker on inactive plaques was confirmed. Specific focal uptake of 68Ga-fucoidan were detected at aorta segments by micro-PET, and correlated with high-resolution magnetic resonance imaging (MRI), which was used to characterize the morphology of plaques. 68Ga-fucoidan also showed a greater affinity to active inflamed plaque in comparison of inactive fibrous plaque, which was assessed by autoradiography. Specificity of 68Ga-DOTATATE and 68Ga-fucoidan were confirmed by ex-vivo blocking autoradiography and in vivo blocking PET imaging respectively. In human study, focal uptake of both 18F-FDG and 68Ga-DOTATATE was detected. Analyzing concordance of two tracers' uptake ratio, Out of the 37 sites with highest focal 68Ga-DOTATATE uptake, 16 (43.2\%) also had focal 18F-FDG uptake. Of 39 sites with highest 18F-FDG uptake, only 11 (28.2\%) had a colocalized 68Ga-DOTATATE accumulation. Correlated tracers' uptake and calcium burden and risk factors, Mean target-to-background ratio (TBR) of 68Ga-DOTATATE correlated significantly with the presence of calcified plaques (r=0.52), hypertension (r=0.60), age (r=0.56) and uptake of 18F-FDG (r=0.64). TBRmean of 18F-FDG correlated significantly only with hypertension (r=0.58; p<0.05). Additionally, TBRmean of 68Ga-DOTATATE is significant higher in the high risk group while TBRmean of 18F-FDG is not. In conclusion, we evaluated vascular inflammation of atherosclerosis non-invasively using the two PET tracers: 68Ga-DOTATATE and 68Ga-Fucoidan. 68Ga-DOTATATE show specific affinity to infiltrated macrophage within the plaques. 68Ga-Fucoidan may hold the potential to discriminate between active and inactive atherosclerotic plaques in terms of variant accumulation on different-types of plaques. PET as leading molecular imaging technique provides superiority in assessing cellular activity, which is pivotal for understanding internal activity of atherosclerotic plaques. Since diagnosis of atherosclerosis is a complex and multi-dimensional task. More integrated imaging technology such as PET/MRI, faster imaging algorithm, more efficient radiotracer are required for further development of atherosclerosis imaging,}, subject = {Arteriosklerose}, language = {en} }