@article{SchmidtAltDeoghareetal.2022, author = {Schmidt, Sven and Alt, Yvonne and Deoghare, Nikita and Kr{\"u}ger, Sarah and Kern, Anna and Rockel, Anna Frederike and Wagner, Nicole and Erg{\"u}n, S{\"u}leyman and W{\"o}rsd{\"o}rfer, Philipp}, title = {A blood vessel organoid model recapitulating aspects of vasculogenesis, angiogenesis and vessel wall maturation}, series = {Organoids}, volume = {1}, journal = {Organoids}, number = {1}, issn = {2674-1172}, doi = {10.3390/organoids1010005}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284043}, pages = {41 -- 53}, year = {2022}, abstract = {Blood vessel organoids are an important in vitro model to understand the underlying mechanisms of human blood vessel development and for toxicity testing or high throughput drug screening. Here we present a novel, cost-effective, and easy to manufacture vascular organoid model. To engineer the organoids, a defined number of human induced pluripotent stem cells are seeded in non-adhesive agarose coated wells of a 96-well plate and directed towards a lateral plate mesoderm fate by activation of Wnt and BMP4 signaling. We observe the formation of a circular layer of angioblasts around days 5-6. Induced by VEGF application, CD31\(^+\) vascular endothelial cells appear within this vasculogenic zone at approximately day 7 of organoid culture. These cells arrange to form a primitive vascular plexus from which angiogenic sprouting is observed after 10 days of culture. The differentiation outcome is highly reproducible, and the size of organoids is scalable depending on the number of starting cells. We observe that the initial vascular ring forms at the interface between two cell populations. The inner cellular compartment can be distinguished from the outer by the expression of GATA6, a marker of lateral plate mesoderm. Finally, 14-days-old organoids were transplanted on the chorioallantois membrane of chicken embryos resulting in a functional connection of the human vascular network to the chicken circulation. Perfusion of the vessels leads to vessel wall maturation and remodeling as indicated by the formation of a continuous layer of smooth muscle actin expressing cells enwrapping the endothelium. In summary, our organoid model recapitulates human vasculogenesis, angiogenesis as well as vessel wall maturation and therefore represents an easy and cost-effective tool to study all steps of blood vessel development and maturation directly in the human setting without animal experimentation.}, language = {en} } @article{DoganScheuringWagneretal.2021, author = {Dogan, Leyla and Scheuring, Ruben and Wagner, Nicole and Ueda, Yuichiro and Schmidt, Sven and W{\"o}rsd{\"o}rfer, Philipp and Groll, J{\"u}rgen and Erg{\"u}n, S{\"u}leyman}, title = {Human iPSC-derived mesodermal progenitor cells preserve their vasculogenesis potential after extrusion and form hierarchically organized blood vessels}, series = {Biofabrication}, volume = {13}, journal = {Biofabrication}, number = {4}, doi = {10.1088/1758-5090/ac26ac}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254046}, year = {2021}, abstract = {Post-fabrication formation of a proper vasculature remains an unresolved challenge in bioprinting. Established strategies focus on the supply of the fabricated structure with nutrients and oxygen and either rely on the mere formation of a channel system using fugitive inks or additionally use mature endothelial cells and/or peri-endothelial cells such as smooth muscle cells for the formation of blood vessels in vitro. Functional vessels, however, exhibit a hierarchical organization and multilayered wall structure that is important for their function. Human induced pluripotent stem cell-derived mesodermal progenitor cells (hiMPCs) have been shown to possess the capacity to form blood vessels in vitro, but have so far not been assessed for their applicability in bioprinting processes. Here, we demonstrate that hiMPCs, after formulation into an alginate/collagen type I bioink and subsequent extrusion, retain their ability to give rise to the formation of complex vessels that display a hierarchical network in a process that mimics the embryonic steps of vessel formation during vasculogenesis. Histological evaluations at different time points of extrusion revealed the initial formation of spheres, followed by lumen formation and further structural maturation as evidenced by building a multilayered vessel wall and a vascular network. These findings are supported by immunostainings for endothelial and peri-endothelial cell markers as well as electron microscopic analyses at the ultrastructural level. Moreover, endothelial cells in capillary-like vessel structures deposited a basement membrane-like matrix at the basal side between the vessel wall and the alginate-collagen matrix. After transplantation of the printed constructs into the chicken chorioallantoic membrane (CAM) the printed vessels connected to the CAM blood vessels and get perfused in vivo. These results evidence the applicability and great potential of hiMPCs for the bioprinting of vascular structures mimicking the basic morphogenetic steps of de novo vessel formation during embryogenesis.}, language = {en} }