@article{OkudaLenzSeitzetal.2023, author = {Okuda, Takumi and Lenz, Ann-Kathrin and Seitz, Florian and Vogel, J{\"o}rg and H{\"o}bartner, Claudia}, title = {A SAM analogue-utilizing ribozyme for site-specific RNA alkylation in living cells}, series = {Nature Chemistry}, journal = {Nature Chemistry}, doi = {10.1038/s41557-023-01320-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-328762}, year = {2023}, abstract = {Post-transcriptional RNA modification methods are in high demand for site-specific RNA labelling and analysis of RNA functions. In vitro-selected ribozymes are attractive tools for RNA research and have the potential to overcome some of the limitations of chemoenzymatic approaches with repurposed methyltransferases. Here we report an alkyltransferase ribozyme that uses a synthetic, stabilized S-adenosylmethionine (SAM) analogue and catalyses the transfer of a propargyl group to a specific adenosine in the target RNA. Almost quantitative conversion was achieved within 1 h under a wide range of reaction conditions in vitro, including physiological magnesium ion concentrations. A genetically encoded version of the SAM analogue-utilizing ribozyme (SAMURI) was expressed in HEK293T cells, and intracellular propargylation of the target adenosine was confirmed by specific fluorescent labelling. SAMURI is a general tool for the site-specific installation of the smallest tag for azide-alkyne click chemistry, which can be further functionalized with fluorophores, affinity tags or other functional probes.}, language = {en} } @article{ScheitlOkudaAdelmannetal.2023, author = {Scheitl, Carolin P. M. and Okuda, Takumi and Adelmann, Juliane and H{\"o}bartner, Claudia}, title = {Ribozyme-catalyzed late-stage functionalization and fluorogenic labeling of RNA}, series = {Angewandte Chemie International Edition}, volume = {62}, journal = {Angewandte Chemie International Edition}, doi = {10.1002/anie.202305463}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-327543}, year = {2023}, abstract = {Site-specific introduction of biorthogonal handles into RNAs is in high demand for decorating RNAs with fluorophores, affinity labels or other modifications. Aldehydes represent attractive functional groups for post-synthetic bioconjugation reactions. Here, we report a ribozyme-based method for the synthesis of aldehyde-functionalized RNA by directly converting a purine nucleobase. Using the methyltransferase ribozyme MTR1 as an alkyltransferase, the reaction is initiated by site-specific N1 benzylation of purine, followed by nucleophilic ring opening and spontaneous hydrolysis under mild conditions to yield a 5-amino-4-formylimidazole residue in good yields. The modified nucleotide is accessible to aldehyde-reactive probes, as demonstrated by the conjugation of biotin or fluorescent dyes to short synthetic RNAs and tRNA transcripts. Upon fluorogenic condensation with a 2,3,3-trimethylindole, a novel hemicyanine chromophore was generated directly on the RNA. This work expands the MTR1 ribozyme's area of application from a methyltransferase to a tool for site-specific late-stage functionalization of RNA.}, language = {en} } @article{LiuVonhausenSchulzetal.2022, author = {Liu, Bin and Vonhausen, Yvonne and Schulz, Alexander and H{\"o}bartner, Claudia and W{\"u}rthner, Frank}, title = {Peptide Backbone Directed Self-Assembly of Merocyanine Oligomers into Duplex Structures}, series = {Angewandte Chemie International Edition}, volume = {61}, journal = {Angewandte Chemie International Edition}, number = {21}, doi = {10.1002/anie.202200120}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318797}, year = {2022}, abstract = {The pseudopeptide backbone provided by N-(2-aminoethyl)-glycine oligomers with attached nucleobases has been widely utilized in peptide nucleic acids (PNAs) as DNA mimics. Here we demonstrate the suitability of this backbone for the formation of structurally defined dye stacks. Toward this goal a series of peptide merocyanine (PMC) dye oligomers connected to a N-(2-aminoethyl)-glycine backbone were prepared through peptide synthesis. Our concentration-, temperature- and solvent-dependent UV/Vis absorption studies show that under the control of dipole-dipole interactions, smaller-sized oligomers consisting of one, two or three dyes self-assemble into defined duplex structures containing two up to six chromophores. In contrast, upon further extension of the oligomer, the chosen peptide backbone cannot direct the formation of a defined duplex architecture anymore due to intramolecular aggregation between the dyes. For all aggregate species a moderate aggregation-induced emission enhancement is observed.}, language = {en} } @article{NeitzBessiKachleretal.2022, author = {Neitz, Hermann and Bessi, Irene and Kachler, Valentin and Michel, Manuela and H{\"o}bartner, Claudia}, title = {Tailored tolane-perfluorotolane assembly as supramolecular base pair replacement in DNA}, series = {Angewandte Chemie International Edition}, volume = {62}, journal = {Angewandte Chemie International Edition}, number = {1}, doi = {10.1002/anie.202214456}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312575}, year = {2022}, abstract = {Arene-fluoroarene interactions offer outstanding possibilities for engineering of supramolecular systems, including nucleic acids. Here, we implement the tolane-perfluorotolane interaction as base pair replacement in DNA. Tolane (THH) and perfluorotolane (TFF) moieties were connected to acyclic backbone units, comprising glycol nucleic acid (GNA) or butyl nucleic acid (BuNA) building blocks, that were incorporated via phosphoramidite chemistry at opposite positions in a DNA duplex. Thermodynamic analyses by UV thermal melting revealed a compelling stabilization by THH/TFF heteropairs only when connected to the BuNA backbone, but not with the shorter GNA linker. Detailed NMR studies confirmed the preference of the BuNA backbone for enhanced polar π-stacking. This work defines how orthogonal supramolecular interactions can be tailored by small constitutional changes in the DNA backbone, and it inspires future studies of arene-fluoroarene-programmed assembly of DNA.}, language = {en} } @article{MieczkowskiSteinmetzgerBessietal.2021, author = {Mieczkowski, Mateusz and Steinmetzger, Christian and Bessi, Irene and Lenz, Ann-Kathrin and Schmiedel, Alexander and Holzapfel, Marco and Lambert, Christoph and Pena, Vladimir and H{\"o}bartner, Claudia}, title = {Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, doi = {10.1038/s41467-021-23932-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270274}, year = {2021}, abstract = {Fluorogenic RNA aptamers are synthetic functional RNAs that specifically bind and activate conditional fluorophores. The Chili RNA aptamer mimics large Stokes shift fluorescent proteins and exhibits high affinity for 3,5-dimethoxy-4-hydroxybenzylidene imidazolone (DMHBI) derivatives to elicit green or red fluorescence emission. Here, we elucidate the structural and mechanistic basis of fluorescence activation by crystallography and time-resolved optical spectroscopy. Two co-crystal structures of the Chili RNA with positively charged DMHBO+ and DMHBI+ ligands revealed a G-quadruplex and a trans-sugar-sugar edge G:G base pair that immobilize the ligand by π-π stacking. A Watson-Crick G:C base pair in the fluorophore binding site establishes a short hydrogen bond between the N7 of guanine and the phenolic OH of the ligand. Ultrafast excited state proton transfer (ESPT) from the neutral chromophore to the RNA was found with a time constant of 130 fs and revealed the mode of action of the large Stokes shift fluorogenic RNA aptamer.}, language = {en} } @article{LiaqatSednevStilleretal.2021, author = {Liaqat, Anam and Sednev, Maksim V. and Stiller, Carina and H{\"o}bartner, Claudia}, title = {RNA-cleaving deoxyribozymes differentiate methylated cytidine isomers in RNA}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, doi = {10.1002/anie.202106517}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256519}, pages = {19058-19062}, year = {2021}, abstract = {Deoxyribozymes are emerging as modification-specific endonucleases for the analysis of epigenetic RNA modifications. Here, we report RNA-cleaving deoxyribozymes that differentially respond to the presence of natural methylated cytidines, 3-methylcytidine (m\(^3\)C), N\(^4\)-methylcytidine (m\(^4\)C), and 5-methylcytidine (m\(^5\)C), respectively. Using in vitro selection, we found several DNA catalysts, which are selectively activated by only one of the three cytidine isomers, and display 10- to 30-fold accelerated cleavage of their target m\(^3\)C-, m\(^4\)C- or m\(^5\)C-modified RNA. An additional deoxyribozyme is strongly inhibited by any of the three methylcytidines, but effectively cleaves unmodified RNA. The mXC-detecting deoxyribozymes are programmable for the interrogation of natural RNAs of interest, as demonstrated for human mitochondrial tRNAs containing known m\(^3\)C and m\(^5\)C sites. The results underline the potential of synthetic functional DNA to shape highly selective active sites.}, language = {en} } @article{KleiberLemusDiazStilleretal.2022, author = {Kleiber, Nicole and Lemus-Diaz, Nicolas and Stiller, Carina and Heinrichs, Marleen and Mong-Quyen Mai, Mandy and Hackert, Philipp and Richter-Dennerlein, Ricarda and H{\"o}bartner, Claudia and Bohnsack, Katherine E. and Bohnsack, Markus T.}, title = {The RNA methyltransferase METTL8 installs m\(^3\)C\(_{32}\) in mitochondrial tRNAs\(^{Thr/Ser(UCN)}\) to optimise tRNA structure and mitochondrial translation}, series = {Nature Communication}, volume = {13}, journal = {Nature Communication}, doi = {10.1038/s41467-021-27905-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254592}, year = {2022}, abstract = {Modified nucleotides in tRNAs are important determinants of folding, structure and function. Here we identify METTL8 as a mitochondrial matrix protein and active RNA methyltransferase responsible for installing m\(^3\)C\(_{32}\) in the human mitochondrial (mt-)tRNA\(^{Thr}\) and mt-tRNA\(^{Ser(UCN)}\). METTL8 crosslinks to the anticodon stem loop (ASL) of many mt-tRNAs in cells, raising the question of how methylation target specificity is achieved. Dissection of mttRNA recognition elements revealed U\(_{34}\)G\(_{35}\) and t\(^6\)A\(_{37}\)/(ms\(^2\))i\(^6\)A\(_{37}\), present concomitantly only in the ASLs of the two substrate mt-tRNAs, as key determinants for METTL8-mediated methylation of C\(_{32}\). Several lines of evidence demonstrate the influence of U\(_{34}\), G\(_{35}\), and the m\(^3\)C\(_{32}\) and t\(^6\)A\(_{37}\)/(ms\(^2\))i\(^6\)A\(_{37}\) modifications in mt-tRNA\(^{Thr/Ser(UCN)}\) on the structure of these mt-tRNAs. Although mt-tRNA\(^{Thr/Ser(UCN)}\) lacking METTL8-mediated m\(^3\)C\(_{32}\) are efficiently aminoacylated and associate with mitochondrial ribosomes, mitochondrial translation is mildly impaired by lack of METTL8. Together these results define the cellular targets of METTL8 and shed new light on the role of m\(^3\)C\(_{32}\) within mt-tRNAs.}, language = {en} } @article{KabingerStillerSchmitzovaetal.2021, author = {Kabinger, Florian and Stiller, Carina and Schmitzov{\´a}, Jana and Dienemann, Christian and Kokic, Goran and Hillen, Hauke S. and H{\"o}bartner, Claudia and Cramer, Patrick}, title = {Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis}, series = {Nature Structural \& Molecular Biology}, volume = {28}, journal = {Nature Structural \& Molecular Biology}, doi = {10.1038/s41594-021-00651-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254603}, pages = {740-746}, year = {2021}, abstract = {Molnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the molecular mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochemical assays show that the RdRp uses the active form of molnupiravir, β-d-\(N^4\)-hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp-RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.}, language = {en} } @article{DietzschBialasBandorfetal.2022, author = {Dietzsch, Julia and Bialas, David and Bandorf, Johannes and W{\"u}rthner, Frank and H{\"o}bartner, Claudia}, title = {Tuning Exciton Coupling of Merocyanine Nucleoside Dimers by RNA, DNA and GNA Double Helix Conformations}, series = {Angewandte Chemie International Edition}, journal = {Angewandte Chemie International Edition}, doi = {10.1002/anie.202116783}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254565}, pages = {e202116783}, year = {2022}, abstract = {Exciton coupling between two or more chromophores in a specific environment is a key mechanism associated with color tuning and modulation of absorption energies. This concept is well exemplified by natural photosynthetic proteins, and can also be achieved in synthetic nucleic acid nanostructures. Here we report the coupling of barbituric acid merocyanine (BAM) nucleoside analogues and show that exciton coupling can be tuned by the double helix conformation. BAM is a nucleobase mimic that was incorporated in the phosphodiester backbone of RNA, DNA and GNA oligonucleotides. Duplexes with different backbone constitutions and geometries afforded different mutual dye arrangements, leading to distinct optical signatures due to competing modes of chromophore organization via electrostatic, dipolar, - stacking and hydrogen-bonding interactions. The realized supramolecular motifs include hydrogenbonded BAM-adenine base pairs and antiparallel as well as rotationally stacked BAM dimer aggregates with distinct absorption, CD and fluorescence properties.}, language = {en} } @article{LiaqatSednevStilleretal.2021, author = {Liaqat, Anam and Sednev, Maksim V. and Stiller, Carina and H{\"o}bartner, Claudia}, title = {RNA-Cleaving Deoxyribozymes Differentiate Methylated Cytidine Isomers in RNA}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {35}, doi = {10.1002/anie.202106517}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254544}, pages = {19058-19062}, year = {2021}, abstract = {Deoxyribozymes are emerging as modification-specific endonucleases for the analysis of epigenetic RNA modifications. Here, we report RNA-cleaving deoxyribozymes that differentially respond to the presence of natural methylated cytidines, 3-methylcytidine (m\(^3\)C), N\(^4\)-methylcytidine (m\(^4\)C), and 5-methylcytidine (m\(^5\)C), respectively. Using in vitro selection, we found several DNA catalysts, which are selectively activated by only one of the three cytidine isomers, and display 10- to 30-fold accelerated cleavage of their target m\(^3\)C-, m\(^4\)C- or m\(^5\)C-modified RNA. An additional deoxyribozyme is strongly inhibited by any of the three methylcytidines, but effectively cleaves unmodified RNA. The m\(^X\)C-detecting deoxyribozymes are programmable for the interrogation of natural RNAs of interest, as demonstrated for human mitochondrial tRNAs containing known m\(^3\)C and m\(^5\)C sites. The results underline the potential of synthetic functional DNA to shape highly selective active sites.}, language = {en} } @article{MieczkowskiSteinmetzgerBessietal.2021, author = {Mieczkowski, Mateusz and Steinmetzger, Christian and Bessi, Irene and Lenz, Ann-Kathrin and Schmiedel, Alexander and Holzapfel, Marco and Lambert, Christoph and Pena, Vladimir and H{\"o}bartner, Claudia}, title = {Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, doi = {10.1038/s41467-021-23932-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254527}, pages = {3549}, year = {2021}, abstract = {Fluorogenic RNA aptamers are synthetic functional RNAs that specifically bind and activate conditional fluorophores. The Chili RNA aptamer mimics large Stokes shift fluorescent proteins and exhibits high affinity for 3,5-dimethoxy-4-hydroxybenzylidene imidazolone (DMHBI) derivatives to elicit green or red fluorescence emission. Here, we elucidate the structural and mechanistic basis of fluorescence activation by crystallography and time-resolved optical spectroscopy. Two co-crystal structures of the Chili RNA with positively charged DMHBO+ and DMHBI+ ligands revealed a G-quadruplex and a trans-sugar-sugar edge G:G base pair that immobilize the ligand by π-π stacking. A Watson-Crick G:C base pair in the fluorophore binding site establishes a short hydrogen bond between the N7 of guanine and the phenolic OH of the ligand. Ultrafast excited state proton transfer (ESPT) from the neutral chromophore to the RNA was found with a time constant of 130 fs and revealed the mode of action of the large Stokes shift fluorogenic RNA aptamer.}, language = {en} } @article{KokicHillenTegunovetal.2021, author = {Kokic, Goran and Hillen, Hauke S. and Tegunov, Dimitry and Dienermann, Christian and Seitz, Florian and Schmitzova, Jana and Farnung, Lucas and Siewert, Aaron and H{\"o}bartner, Claudia and Cramer, Patrick}, title = {Mechanism of SARS-CoV-2 polymerase stalling by remdesivir}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, doi = {10.1038/s41467-020-20542-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220979}, year = {2021}, abstract = {Remdesivir is the only FDA-approved drug for the treatment of COVID-19 patients. The active form of remdesivir acts as a nucleoside analog and inhibits the RNA-dependent RNA polymerase (RdRp) of coronaviruses including SARS-CoV-2. Remdesivir is incorporated by the RdRp into the growing RNA product and allows for addition of three more nucleotides before RNA synthesis stalls. Here we use synthetic RNA chemistry, biochemistry and cryoelectron microscopy to establish the molecular mechanism of remdesivir-induced RdRp stalling. We show that addition of the fourth nucleotide following remdesivir incorporation into the RNA product is impaired by a barrier to further RNA translocation. This translocation barrier causes retention of the RNA 3ʹ-nucleotide in the substrate-binding site of the RdRp and interferes with entry of the next nucleoside triphosphate, thereby stalling RdRp. In the structure of the remdesivir-stalled state, the 3ʹ-nucleotide of the RNA product is matched and located with the template base in the active center, and this may impair proofreading by the viral 3ʹ-exonuclease. These mechanistic insights should facilitate the quest for improved antivirals that target coronavirus replication.}, language = {en} } @article{LiaqatStillerMicheletal.2020, author = {Liaqat, Anam and Stiller, Carina and Michel, Manuela and Sednev, Maksim V. and H{\"o}bartner, Claudia}, title = {N\(^6\)-Isopentenyladenosine in RNA Determines the Cleavage Site of Endonuclease Deoxyribozymes}, series = {Angewandte Chemie International Edition}, journal = {Angewandte Chemie International Edition}, edition = {Early View}, doi = {10.1002/ange.202006218}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212121}, year = {2020}, abstract = {RNA-cleaving deoxyribozymes can serve as selective sensors and catalysts to examine the modification state of RNA. However, site-specific endonuclease deoxyribozymes that selectively cleave posttranscriptionally modified RNA are extremely rare and their specificity over unmodified RNA is low. In this study, we report that the native tRNA modification N\(^6\)-isopentenyladenosine (i\(^6\)A) strongly enhances the specificity and has the power to reconfigure the active site of an RNA-cleaving deoxyribozyme. Using in vitro selection, we identified a DNA enzyme that cleaves i\(^6\)A-modified RNA at least 2500-fold faster than unmodified RNA. Another deoxyribozyme shows unique and unprecedented behaviour by shifting its cleavage site in the presence of the i\(^6\)A RNA modification. Together with deoxyribozymes that are strongly inhibited by i\(^6\)A, these results highlight intricate ways of modulating the catalytic activity of DNA by posttranscriptional RNA modifications.}, language = {en} } @article{RonaldHoebartner2020, author = {Ronald, Micura and H{\"o}bartner, Claudia}, title = {Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes}, series = {Chemical Society Reviews}, journal = {Chemical Society Reviews}, edition = {Advance Article}, doi = {10.1039/D0CS00617C}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212133}, year = {2020}, abstract = {This review aims at juxtaposing common versus distinct structural and functional strategies that are applied by aptamers, riboswitches, and ribozymes/DNAzymes. Focusing on recently discovered systems, we begin our analysis with small-molecule binding aptamers, with emphasis on in vitro-selected fluorogenic RNA aptamers and their different modes of ligand binding and fluorescence activation. Fundamental insights are much needed to advance RNA imaging probes for detection of exo- and endogenous RNA and for RNA process tracking. Secondly, we discuss the latest gene expression-regulating mRNA riboswitches that respond to the alarmone ppGpp, to PRPP, to NAD+, to adenosine and cytidine diphosphates, and to precursors of thiamine biosynthesis (HMP-PP), and we outline new subclasses of SAM and tetrahydrofolate-binding RNA regulators. Many riboswitches bind protein enzyme cofactors that, in principle, can catalyse a chemical reaction. For RNA, however, only one system (glmS ribozyme) has been identified in Nature thus far that utilizes a small molecule - glucosamine-6-phosphate - to participate directly in reaction catalysis (phosphodiester cleavage). We wonder why that is the case and what is to be done to reveal such likely existing cellular activities that could be more diverse than currently imagined. Thirdly, this brings us to the four latest small nucleolytic ribozymes termed twister, twister-sister, pistol, and hatchet as well as to in vitro selected DNA and RNA enzymes that promote new chemistry, mainly by exploiting their ability for RNA labelling and nucleoside modification recognition. Enormous progress in understanding the strategies of nucleic acids catalysts has been made by providing thorough structural fundaments (e.g. first structure of a DNAzyme, structures of ribozyme transition state mimics) in combination with functional assays and atomic mutagenesis.}, language = {en} } @article{ScheitlLangeHoebartner2020, author = {Scheitl, Carolin P. M. and Lange, Sandra and H{\"o}bartner, Claudia}, title = {New deoxyribozymes for the native ligation of RNA}, series = {Molecules}, volume = {25}, journal = {Molecules}, number = {16}, doi = {https://doi.org/10.3390/molecules25163650}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-210405}, year = {2020}, abstract = {Deoxyribozymes (DNAzymes) are small, synthetic, single-stranded DNAs capable of catalysing chemical reactions, including RNA ligation. Herein, we report a novel class of RNA ligase deoxyribozymes that utilize 5'-adenylated RNA (5'-AppRNA) as the donor substrate, mimicking the activated intermediates of protein-catalyzed RNA ligation. Four new DNAzymes were identified by in vitro selection from an N40 random DNA library and were shown to catalyze the intermolecular linear RNA-RNA ligation via the formation of a native 3'-5'-phosphodiester linkage. The catalytic activity is distinct from previously described RNA-ligating deoxyribozymes. Kinetic analyses revealed the optimal incubation conditions for high ligation yields and demonstrated a broad RNA substrate scope. Together with the smooth synthetic accessibility of 5'-adenylated RNAs, the new DNA enzymes are promising tools for the protein-free synthesis of long RNAs, for example containing precious modified nucleotides or fluorescent labels for biochemical and biophysical investigations.}, language = {en} } @article{MaghamiDeyLenzetal.2020, author = {Maghami, Mohammad Ghaem and Dey, Surjendu and Lenz, Ann-Kathrin and H{\"o}bartner, Claudia}, title = {Repurpsing Antiviral Drugs for Orthogonal RNA-Catalyzed Labeling}, series = {Angewandte Chemie, International Edition}, volume = {59}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.202001300}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205552}, pages = {9335-9339}, year = {2020}, abstract = {In vitro selected ribozymes are promising tools for site-specific labeling of RNA. Previously known nucleic acid catalysts attached fluorescently labeled adenosine or guanosine derivatives through 2',5'-branched phosphodiester bonds to the RNA of interest. Herein, we report new ribozymes that use orthogonal substrates, derived from the antiviral drug tenofovir, and attach bioorthogonal functional groups, as well as affinity handles and fluorescent reporter units through a hydrolytically more stable phosphonate ester linkage. The tenofovir transferase ribozymes were identified by in vitro selection and are orthogonal to nucleotide transferase ribozymes. As genetically encodable functional RNAs, these ribozymes may be developed for potential cellular applications. The orthogonal ribozymes addressed desired target sites in large RNAs in vitro, as shown by fluorescent labeling of E. coli 16S and 23S RNAs in total cellular RNA.}, language = {en} } @article{SteinmetzgerBaeuerleinHoebartner2020, author = {Steinmetzger, Christian and B{\"a}uerlein, Carmen and H{\"o}bartner, Claudia}, title = {Supramolecular fluorescence resonance energy transfer in nucleobase-modified fluorogenic RNA aptamers}, series = {Angewandte Chemie, International Edition}, volume = {59}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201916707}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203084}, pages = {6760-6764}, year = {2020}, abstract = {RNA aptamers form compact tertiary structures and bind their ligands in specific binding sites. Fluorescence-based strategies reveal information on structure and dynamics of RNA aptamers. Here we report the incorporation of the universal emissive nucleobase analog 4-cyanoindole into the fluorogenic RNA aptamer Chili, and its application as a donor for supramolecular FRET to bound ligands DMHBI+ or DMHBO+. The photophysical properties of the new nucleobase-ligand-FRET pair revealed structural restraints for the overall RNA aptamer organization and identified nucleotide positions suitable for FRET-based readout of ligand binding. This strategy is generally suitable for binding site mapping and may also be applied for responsive aptamer devices.}, language = {en} } @article{SteinmetzgerBessiLenzetal.2019, author = {Steinmetzger, Christian and Bessi, Irene and Lenz, Ann-Kathrin and H{\"o}bartner, Claudia}, title = {Structure-fluorescence activation relationships of a large Stokes shift fluorogenic RNA aptamer}, series = {Nucleic Acids Research}, journal = {Nucleic Acids Research}, doi = {10.1093/nar/gkz1084/5628921}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192340}, pages = {gkz1084}, year = {2019}, abstract = {The Chili RNA aptamer is a 52 nt long fluorogen-activating RNA aptamer (FLAP) that confers fluorescence to structurally diverse derivatives of fluorescent protein chromophores. A key feature of Chili is the formation of highly stable complexes with different ligands, which exhibit bright, highly Stokes-shifted fluorescence emission. In this work, we have analyzed the interactions between the Chili RNA and a family of conditionally fluorescent ligands using a variety of spectroscopic, calorimetric and biochemical techniques to reveal key structure - fluorescence activation relationships (SFARs). The ligands under investigation form two categories with emission maxima of ~540 nm or ~590 nm, respectively, and bind with affinities in the nanomolar to low-micromolar range. Isothermal titration calorimetry was used to elucidate the enthalpic and entropic contributions to binding affinity for a cationic ligand that is unique to the Chili aptamer. In addition to fluorescence activation, ligand binding was also observed by NMR spectroscopy, revealing characteristic signals for the formation of a G-quadruplex only upon ligand binding. These data shed light on the molecular features required and responsible for the large Stokes shift and the strong fluorescence enhancement of red and green emitting RNA-chromophore complexes.}, language = {en} }