@article{GuthHueserRothetal.2021, author = {Guth, Sabine and H{\"u}ser, Stephanie and Roth, Angelika and Degen, Gisela and Diel, Patrick and Edlund, Karolina and Eisenbrand, Gerhard and Engel, Karl-Heinz and Epe, Bernd and Grune, Tilman and Heinz, Volker and Henle, Thomas and Humpf, Hans-Ulrich and J{\"a}ger, Henry and Joost, Hans-Georg and Kulling, Sabine E. and Lampen, Alfonso and Mally, Angela and Marchan, Rosemarie and Marko, Doris and M{\"u}hle, Eva and Nitsche, Michael A. and R{\"o}hrdanz, Elke and Stadler, Richard and van Thriel, Christoph and Vieths, Stefan and Vogel, Rudi F. and Wascher, Edmund and Watzl, Carsten and N{\"o}thlings, Ute and Hengstler, Jan G.}, title = {Contribution to the ongoing discussion on fluoride toxicity}, series = {Archives of Toxicology}, volume = {95}, journal = {Archives of Toxicology}, number = {7}, issn = {0340-5761}, doi = {10.1007/s00204-021-03072-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-307161}, pages = {2571-2587}, year = {2021}, abstract = {Since the addition of fluoride to drinking water in the 1940s, there have been frequent and sometimes heated discussions regarding its benefits and risks. In a recently published review, we addressed the question if current exposure levels in Europe represent a risk to human health. This review was discussed in an editorial asking why we did not calculate benchmark doses (BMD) of fluoride neurotoxicity for humans. Here, we address the question, why it is problematic to calculate BMDs based on the currently available data. Briefly, the conclusions of the available studies are not homogeneous, reporting negative as well as positive results; moreover, the positive studies lack control of confounding factors such as the influence of well-known neurotoxicants. We also discuss the limitations of several further epidemiological studies that did not meet the inclusion criteria of our review. Finally, it is important to not only focus on epidemiological studies. Rather, risk analysis should consider all available data, including epidemiological, animal, as well as in vitro studies. Despite remaining uncertainties, the totality of evidence does not support the notion that fluoride should be considered a human developmental neurotoxicant at current exposure levels in European countries.}, language = {en} } @article{RietjensDussortGuentheretal.2018, author = {Rietjens, Ivonne M. C. M. and Dussort, P. and G{\"u}nther, Helmut and Hanlon, Paul and Honda, Hiroshi and Mally, Angela and O'Hagan, Sue and Scholz, Gabriele and Seidel, Albrecht and Swenberg, James and Teeguarden, Justin and Eisenbrand, Gerhard}, title = {Exposure assessment of process-related contaminants in food by biomarker monitoring}, series = {Archives of Toxicology}, volume = {92}, journal = {Archives of Toxicology}, number = {1}, doi = {10.1007/s00204-017-2143-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226268}, pages = {15-40}, year = {2018}, abstract = {Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario's and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment.}, language = {en} }