@article{ElMeseryRosenthalRauertWunderlichetal.2019, author = {El-Mesery, Mohamed and Rosenthal, Tina and Rauert-Wunderlich, Hilka and Schreder, Martin and St{\"u}hmer, Thorsten and Leich, Ellen and Schlosser, Andreas and Ehrenschwender, Martin and Wajant, Harald and Siegmund, Daniela}, title = {The NEDD8-activating enzyme inhibitor MLN4924 sensitizes a TNFR1+ subgroup of multiple myeloma cells for TNF-induced cell death}, series = {Cell Death \& Disease}, volume = {10}, journal = {Cell Death \& Disease}, doi = {10.1038/s41419-019-1860-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226666}, year = {2019}, abstract = {The NEDD8-activating enzyme (NAE) inhibitor MLN4924 inhibits cullin-RING ubiquitin ligase complexes including the SKP1-cullin-F-box E3 ligase βTrCP. MLN4924 therefore inhibits also the βTrCP-dependent activation of the classical and the alternative NFĸB pathway. In this work, we found that a subgroup of multiple myeloma cell lines (e.g., RPMI-8226, MM.1S, KMS-12BM) and about half of the primary myeloma samples tested are sensitized to TNF-induced cell death by MLN4924. This correlated with MLN4924-mediated inhibition of TNF-induced activation of the classical NFκB pathway and reduced the efficacy of TNF-induced TNFR1 signaling complex formation. Interestingly, binding studies revealed a straightforward correlation between cell surface TNFR1 expression in multiple myeloma cell lines and their sensitivity for MLN4924/TNF-induced cell death. The cell surface expression levels of TNFR1 in the investigated MM cell lines largely correlated with TNFR1 mRNA expression. This suggests that the variable levels of cell surface expression of TNFR1 in myeloma cell lines are decisive for TNF/MLN4924 sensitivity. Indeed, introduction of TNFR1 into TNFR1-negative TNF/MLN4924-resistant KMS-11BM cells, was sufficient to sensitize this cell line for TNF/MLN4924-induced cell death. Thus, MLN4924 might be especially effective in myeloma patients with TNFR1+ myeloma cells and a TNFhigh tumor microenvironment.}, language = {en} } @article{FuhrHeidenreichSrivastavaetal.2022, author = {Fuhr, Viktoria and Heidenreich, Shanice and Srivastava, Mugdha and Riedel, Angela and D{\"u}ll, Johannes and Gerhard-Hartmann, Elena and Rosenwald, Andreas and Rauert-Wunderlich, Hilka}, title = {CD52 and OXPHOS-potential targets in ibrutinib-treated mantle cell lymphoma}, series = {Cell Death Discovery}, volume = {8}, journal = {Cell Death Discovery}, issn = {2058-7716}, doi = {10.1038/s41420-022-01289-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300817}, year = {2022}, abstract = {Altered features of tumor cells acquired across therapy can result in the survival of treatment-resistant clones that may cause minimal residual disease (MRD). Despite the efficacy of ibrutinib in treating relapsed/refractory mantle cell lymphoma, the obstacle of residual cells contributes to relapses of this mature B-cell neoplasm, and the disease remains incurable. RNA-seq analysis of an ibrutinib-sensitive mantle cell lymphoma cell line following ibrutinib incubation of up to 4 d, corroborated our previously postulated resistance mechanism of a metabolic switch to reliance on oxidative phosphorylation (OXPHOS) in surviving cells. Besides, we had shown that treatment-persisting cells were characterized by increased CD52 expression. Therefore, we hypothesized that combining ibrutinib with another agent targeting these potential escape mechanisms could minimize the risk of survival of ibrutinib-resistant cells. Concomitant use of ibrutinib with OXPHOS-inhibitor IACS-010759 increased toxicity compared to ibrutinib alone. Targeting CD52 was even more efficient, as addition of CD52 mAb in combination with human serum following ibrutinib pretreatment led to rapid complement-dependent-cytotoxicity in an ibrutinib-sensitive cell line. In primary mantle cell lymphoma cells, a higher toxic effect with CD52 mAb was obtained, when cells were pretreated with ibrutinib, but only in an ibrutinib-sensitive cohort. Given the challenge of treating multi-resistant mantle cell lymphoma patients, this work highlights the potential use of anti-CD52 therapy as consolidation after ibrutinib treatment in patients who responded to the BTK inhibitor to achieve MRD negativity and prolong progression-free survival.}, language = {en} } @article{RudeliusRosenfeldtLeichetal.2019, author = {Rudelius, Martina and Rosenfeldt, Mathias Tillmann and Leich, Ellen and Rauert-Wunderlich, Hilka and Solimando, Antonio Giovanni and Ott, German and Rosenwald, Andreas and Beilhack, Andreas}, title = {Inhibition of focal adhesion kinase overcomes resistance of mantle cell lymphoma to ibrutinib in the bone marrow microenvironment}, series = {Haematologica}, volume = {103}, journal = {Haematologica}, number = {1}, doi = {10.3324/haematol.2017.177162}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227117}, pages = {116-125}, year = {2019}, abstract = {Mantle cell lymphoma and other lymphoma subtypes often spread to the bone marrow, and stromal interactions mediated by focal adhesion kinase frequently enhance survival and drug resistance of the lymphoma cells. To study the role of focal adhesion kinase in mantle cell lymphoma, immunohistochemistry of primary cases and functional analysis of mantle cell lymphoma cell lines and primary mantle cell lymphoma cells co-cultured with bone marrow stromal cells (BMSC) using small molecule inhibitors and RNAi-based focal adhesion kinase silencing was performed. We showed that focal adhesion kinase is highly expressed in bone marrow infiltrates of mantle cell lymphoma and in mantle cell lymphoma cell lines. Stroma-mediated activation of focal adhesion kinase led to activation of multiple kinases (AKT, p42/44 and NF-kappa B), that are important for prosurvival and proliferation signaling. Interestingly, RNAi-based focal adhesion kinase silencing or inhibition with small molecule inhibitors (FAKi) resulted in blockage of targeted cell invasion and induced apoptosis by inactivation of multiple signaling cascades, including the classic and alternative NF-kappa B pathway. In addition, the combined treatment of ibrutinib and FAKi was highly synergistic, and ibrutinib resistance of mantle cell lymphoma could be overcome. These data demonstrate that focal adhesion kinase is important for stroma-mediated survival and drug resistance in mantle cell lymphoma, providing indications for a targeted therapeutic strategy.}, subject = {Multiple}, language = {en} } @article{RauertWunderlichSiegmundMaieretal.2013, author = {Rauert-Wunderlich, Hilka and Siegmund, Daniela and Maier, Eduard and Giner, Tina and Bargou, Ralf C. and Wajant, Harald and St{\"u}hmer, Thorsten}, title = {The IKK Inhibitor Bay 11-7082 Induces Cell Death Independent from Inhibition of Activation of NF kappa B Transcription Factors}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0059292}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130140}, pages = {e59292}, year = {2013}, abstract = {Multiple myeloma (MM) displays an NFκB activity-related gene expression signature and about 20\% of primary MM samples harbor genetic alterations conducive to intrinsic NFκB signaling activation. The relevance of blocking the classical versus the alternative NFκB signaling pathway and the molecular execution mechanisms involved, however, are still poorly understood. Here, we comparatively tested NFκB activity abrogation through TPCA-1 (an IKK2 inhibitor), BAY 11-7082 (an IKK inhibitor poorly selective for IKK1 and IKK2), and MLN4924 (an NEDD8 activating enzyme (NAE)-inhibitor), and analyzed their anti-MM activity. Whereas TPCA-1 interfered selectively with activation of the classical NFκB pathway, the other two compounds inhibited classical and alternative NFκB signaling without significant discrimination. Noteworthy, whereas TPCA-1 and MLN4924 elicited rather mild anti-MM effects with slight to moderate cell death induction after 1 day BAY 11-7082 was uniformly highly toxic to MM cell lines and primary MM cells. Treatment with BAY 11-7082 induced rapid cell swelling and its initial effects were blocked by necrostatin-1 or the ROS scavenger BHA, but a lasting protective effect was not achieved even with additional blockade of caspases. Because MLN4924 inhibits the alternative NFκB pathway downstream of IKK1 at the level of p100 processing, the quite discordant effects between MLN4924 and BAY 11-7082 must thus be due to blockade of IKK1-mediated NFκB-independent necrosis-inhibitory functions or represent an off-target effect of BAY 11-7082. In accordance with the latter, we further observed that concomitant knockdown of IKK1 and IKK2 did not have any major short-term adverse effect on the viability of MM cells.}, language = {en} }