@article{ŠebekovaStuermerFazelietal.2015, author = {Šebekov{\´a}, K. and St{\"u}rmer, M. and Fazeli, G. and Bahner, U. and St{\"a}b, F. and Heidland, A.}, title = {Is vitamin D deficiency related to accumulation of advanced glycation end products, markers of inflammation, and oxidative stress in diabetic subjects?}, series = {BioMed Research International}, volume = {2015}, journal = {BioMed Research International}, number = {958097}, doi = {10.1155/2015/958097}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149197}, year = {2015}, abstract = {Objectives. In diabetes accumulated advanced glycation end products (AGEs) are involved in the striking cardiovascular morbidity/mortality. We asked whether a hypovitaminosis D associates with an increased formation and toxicity of AGEs in diabetes. Methods. In 276 diabetics (160M/116 F, age: 65.0 ± 13.4; 43 type 1,T1DM, and 233 type 2 patients, T2DM) and 121 nondiabetic controls (60 M/61 F; age: 58.6 ± 15.5 years) routine biochemistry, levels of 25-hydroxyvitamin D\(_{3}\) (25-(OH)D), skin autofluorescence (SAF), plasma AGE-associated fluorescence (AGE-FL), N\(^{ε}\) -(carboxymethyl) lysine (CML), soluble receptor for AGEs (sRAGE), soluble vascular adhesion protein-1 (sVAP-1), high sensitive C-reactive protein (hs-CRP), and renal function (eGFR) were determined. Results. In the diabetics SAF and AGE-Fl were higher than those of the controls and correlated with age, duration of diabetes, and degree of renal impairment. In T2DM patients but not in T1DM the age-dependent rise of SAF directly correlated with hs-CRP and sVAP-1. 25-(OH)D levels in diabetics and nondiabetics were lowered to a similar degree averaging 22.5 ng/mL. No relationship between 25-(OH)D and studied markers except for sVAP-1 was observed in the diabetics. Conclusion. In diabetics hypovitaminosis D does not augment accumulation of AGEs and studied markers of microinflammation and oxidative stress except for sVAP-1.}, language = {en} } @phdthesis{Zheng2012, author = {Zheng, Peilin}, title = {Ptpn22 silencing in the NOD model of type 1 diabetes indicates the human susceptibility allele of PTPN22 is a gain-of-function variant}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73869}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {PTPN22 encodes the lymphoid tyrosine phosphatase Lyp that can dephosphorylate Lck, ZAP-70 and Fyn to attenuate TCR signaling. A single-nucleotide polymorphism (C1858T) causes a substitution from arginine (R) to tryptophan (W) at 620 residue (R620W). Lyp-620W has been confirmed as a susceptible allele in multiple autoimmune diseases, including type 1 diabetes (T1D). Several independent studies proposed that the disease-associated allele is a gain-of-function variant. However, a recent report found that in human cells and a knockin mouse containing the R620W homolog that Ptpn22 protein degradation is accelerated, indicating Lyp-620W is a loss-of-function variant. Whether Lyp R620W is a gain- or loss-of-function variant remains controversial. To resolve this issue, we generated two lines (P2 and P4) of nonobese diabetic (NOD) mice in which Ptpn22 can be inducibly silenced by RNAi. We found long term silencing of Ptpn22 increased spleen cellularity and regulatory T (Treg) cell numbers, replicating the effect of gene deletion reported in the knockout (KO) B6 mice. Notably, Ptpn22 silencing also increased the reactivity and apoptotic behavior of B lymphocytes, which is consistent with the reduced reactivity and apoptosis of human B cells carrying the alleged gain-of-function PTPN22 allele. Furthermore, loss of Ptpn22 protected P2 KD mice from spontaneous and Cyclophosphamide (CY) induced diabetes. Our data support the notion that Lyp-620W is a gain-of-function variant. Moreover, Lyp may be a valuable target for the treatment of autoimmune diseases.}, subject = {Diabetes mellitus}, language = {en} } @article{ZhaoZhangBhuripanyoetal.2013, author = {Zhao, Bo and Zhang, Keya and Bhuripanyo, Karan and Choi, Chan Hee J. and Villhauer, Eric B. and Li, Heng and Zheng, Ning and Kiyokawa, Hiroaki and Schindelin, Hermann and Yin, Jun}, title = {Profiling the Cross Reactivity of Ubiquitin with the Nedd8 Activating Enzyme by Phage Display}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {e70312}, issn = {1932-6203}, doi = {10.1371/journal.pone.0070312}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128479}, year = {2013}, abstract = {The C-terminal peptides of ubiquitin (UB) and UB-like proteins (UBLs) play a key role in their recognition by the specific activating enzymes (E1s) to launch their transfer through the respective enzymatic cascades thus modifying cellular proteins. UB and Nedd8, a UBL regulating the activity of cullin-RING UB ligases, only differ by one residue at their C-termini; yet each has its specific E1 for the activation reaction. It has been reported recently that UAE can cross react with Nedd8 to enable its passage through the UB transfer cascade for protein neddylation. To elucidate differences in UB recognition by UAE and NAE, we carried out phage selection of a UB library with randomized C-terminal sequences based on the catalytic formation of UB similar to NAE thioester conjugates. Our results confirmed the previous finding that residue 72 of UB plays a "gate-keeping" role in E1 selectivity. We also found that diverse sequences flanking residue 72 at the UB C-terminus can be accommodated by NAE for activation. Furthermore heptameric peptides derived from the C-terminal sequences of UB variants selected for NAE activation can function as mimics of Nedd8 to form thioester conjugates with NAE and the downstream E2 enzyme Ubc12 in the Nedd8 transfer cascade. Once the peptides are charged onto the cascade enzymes, the full-length Nedd8 protein is effectively blocked from passing through the cascade for the critical modification of cullin. We have thus identified a new class of inhibitors of protein neddylation based on the profiles of the UB C-terminal sequences recognized by NAE.}, language = {en} } @phdthesis{ZelmanFemiak2011, author = {Zelman-Femiak, Monika}, title = {Single Particle Tracking ; Membrane Receptor Dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65420}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Single-molecule microscopy is one of the decisive methodologies that allows one to clarify cellular signaling in both spatial and temporal dimentions by tracking with nanometer precision the diffusion of individual microscopic particles coupled to relevant biological molecules. Trajectory analysis not only enables determination of the mechanisms that drive and constrain the particles motion but also to reveal crucial information about the molecule interaction, mobility, stoichiometry, all existing subpopulations and unique functions of particular molecules. Efficacy of this technique depends on two problematic issues the usage of the proper fluorophore and the type of biochemical attachment of the fluorophore to a biomolecule. The goal of this study was to evolve a highly specific labeling method suitable for single molecule tracking, internalization and trafficking studies that would attain a calculable 1:1 fluorophore-to-receptor stoichiometry. A covalent attachment of quantum dots to transmembrane receptors was successfully achieved with a techinque that amalgamates acyl carrier protein (ACP) system as a comparatively small linker and coenzyme A (CoA)-functionalized quantum dots. The necessity of optimization of the quantum dot usage for more precise calculation of the membrane protein stoichiometries in larger assemblies led to the further study in which methods maximizing the number of signals and the tracking times of diverse QD types were examined. Next, the optimized techniques were applied to analyze behavior of interleukin-5 β-common chain receptor (IL-5Rβc) receptors that are endogenously expressed at low level on living differentiated eosinophil-like HL-60 cells. Obtained data disclosed that perused receptors form stable and higher order oligomers. Additionally, the mobility analysis based on increased in number (>10\%) uninterrupted 1000-step trajectories revealed two patterns of confined motion. Thereupon methods were developed that allow both, determination of stoichiometries of cell surface protein complexes and the acquisition of long trajectories for mobility analysis. Sequentially, the aforementioned methods were used to scrutinize on the mobility, internalization and recycling dynamics characterization of a G protein-coupled receptor (GPCRs), the parathyroid hormone receptor (PTHR1) and several bone morphogenetic proteins (BMPs), a member of the TGF-beta superfamily of receptors. These receptors are two important representatives of two varied membrane receptor classes. BMPs activate SMAD- and non-SMAD pathways and as members of the transforming growth factor β (TGF-β) superfamily are entailed in the regulation of proliferation, differentiation, chemotaxis, and apoptosis. For effective ligand induced and ligand independent signaling, two types of transmembrane serine/threonine kinases, BMP type I and type II receptors (BMPRI and BMPRII, respectively) are engaged. Apparently, the lateral mobility profiles of BMPRI and BMPRII receptors differ markedly, which determinate specificity of the signal. Non-SMAD signaling and subsequent osteoblastic differentiation of precursor cells particularly necessitate the confinement of the BMP type I receptor, resulting in the conclusion that receptor lateral mobility is a dominative mechanism to modulate SMAD versus non-SMAD signaling during differentiation. Confined motion was also predominantly observed in the studies devoted to, entailed in the regulation of calcium homeostasis and in bone remodeling, the parathyroid hormone receptor (PTHR1), in which stimulation with five peptide ligands, specific fragments of PTH: hPTH(1-34), hPTHrP(107-111)NH2; PTH(1-14); PTH(1-28) G1R19, bPTH(3-34), first four belonging to PTH agonist group and the last to the antagonist one, were tested in the wide concentration range on living COS-1 and AD293 cells. Next to the mobility, defining the internalization and recycling rates of the PTHR1 receptor maintained in this investigation one of the crucial questions. Internalization, in general, allows to diminish the magnitude of the receptor-mediated G protein signals (desensitization), receptor resensitization via recycling, degradation (down-regulation), and coupling to other signaling pathways (e.g. MAP kinases). Determinants of the internalization process are one of the most addressed in recent studies as key factors for clearer understanding of the process and linking it with biological responses evoked by the signal transduction. The internalization of the PTH-receptor complex occurs via the clathrin-coated pit pathway involving β-arrestin2 and is initiated through the agonist occupancy of the PTHR1 leading to activation of adenylyl cyclase (via Gs), and phosphatidylinositol-specific phospholipase Cβ (via Gq). Taken together, this work embodies complex study of the interleukin-5 β-common chain receptor (IL-5Rβc) receptors, bone morphogenetic proteins (BMPs) and the parathyroid hormone receptor with the application of single-molecule microscopy with the newly attained ACP-quantum dot labeling method and standard techniques.}, subject = {Einzelmolek{\"u}lmikroskopie}, language = {en} } @article{ZahoGhirlandoAlfonsoetal.2015, author = {Zaho, Huaying and Ghirlando, Rodolfo and Alfonso, Carlos and Arisaka, Fumio and Attali, Ilan and Bain, David L. and Bakhtina, Marina M. and Becker, Donald F. and Bedwell, Gregory J. and Bekdemir, Ahmet and Besong, Tabot M. D. and Birck, Catherine and Brautigam, Chad A. and Brennerman, William and Byron, Olwyn and Bzowska, Agnieszka and Chaires, Jonathan B. and Chaton, Catherine T. and Coelfen, Helmbut and Connaghan, Keith D. and Crowley, Kimberly A. and Curth, Ute and Daviter, Tina and Dean, William L. and Diez, Ana I. and Ebel, Christine and Eckert, Debra M. and Eisele, Leslie E. and Eisenstein, Edward and England, Patrick and Escalante, Carlos and Fagan, Jeffrey A. and Fairman, Robert and Finn, Ron M. and Fischle, Wolfgang and Garcia de la Torre, Jose and Gor, Jayesh and Gustafsson, Henning and Hall, Damien and Harding, Stephen E. and Hernandez Cifre, Jose G. and Herr, Andrew B. and Howell, Elizabeth E. and Isaac, Richard S. and Jao, Shu-Chuan and Jose, Davis and Kim, Soon-Jong and Kokona, Bashkim and Kornblatt, Jack A. and Kosek, Dalibor and Krayukhina, Elena and Krzizike, Daniel and Kusznir, Eric A. and Kwon, Hyewon and Larson, Adam and Laue, Thomas M. and Le Roy, Aline and Leech, Andrew P. and Lilie, Hauke and Luger, Karolin and Luque-Ortega, Juan R. and Ma, Jia and May, Carrie A. and Maynard, Ernest L. and Modrak-Wojcik, Anna and Mok, Yee-Foong and M{\"u}cke, Norbert and Nagel-Steger, Luitgard and Narlikar, Geeta J. and Noda, Masanori and Nourse, Amanda and Obsil, Thomas and Park, Chad K and Park, Jin-Ku and Pawelek, Peter D. and Perdue, Erby E. and Perkins, Stephen J. and Perugini, Matthew A. and Peterson, Craig L. and Peverelli, Martin G. and Piszczek, Grzegorz and Prag, Gali and Prevelige, Peter E. and Raynal, Bertrand D. E. and Rezabkova, Lenka and Richter, Klaus and Ringel, Alison E. and Rosenberg, Rose and Rowe, Arthur J. and Rufer, Arne C. and Scott, David J. and Seravalli, Javier G. and Solovyova, Alexandra S. and Song, Renjie and Staunton, David and Stoddard, Caitlin and Stott, Katherine and Strauss, Holder M. and Streicher, Werner W. and Sumida, John P. and Swygert, Sarah G. and Szczepanowski, Roman H. and Tessmer, Ingrid and Toth, Ronald T. and Tripathy, Ashutosh and Uchiyama, Susumu and Uebel, Stephan F. W. and Unzai, Satoru and Gruber, Anna Vitlin and von Hippel, Peter H. and Wandrey, Christine and Wang, Szu-Huan and Weitzel, Steven E and Wielgus-Kutrowska, Beata and Wolberger, Cynthia and Wolff, Martin and Wright, Edward and Wu, Yu-Sung and Wubben, Jacinta M. and Schuck, Peter}, title = {A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0126420}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151903}, pages = {e0126420}, year = {2015}, abstract = {Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304\(\pm\)0.188) S (4.4\%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of \(\pm\)0.030 S (0.7\%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.}, language = {en} } @article{ZadehKhorasaniNolteMuelleretal.2013, author = {Zadeh-Khorasani, Maryam and Nolte, Thomas and Mueller, Thomas D. and Pechlivanis, Markos and Rueff, Franziska and Wollenberg, Andreas and Fricker, Gert and Wolf, Eckhard and Siebeck, Matthias and Gropp, Roswitha}, title = {NOD-scid IL2R \(\gamma^{null}\) mice engrafted with human peripheral blood mononuclear cells as a model to test therapeutics targeting human signaling pathways}, series = {Journal of Translational Medicine}, volume = {11}, journal = {Journal of Translational Medicine}, number = {4}, issn = {1479-5876}, doi = {10.1186/1479-5876-11-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122960}, year = {2013}, abstract = {Background: Animal models of human inflammatory diseases have limited predictive quality for human clinical trials for various reasons including species specific activation mechanisms and the immunological background of the animals which markedly differs from the genetically heterogeneous and often aged patient population. Objective: Development of an animal model allowing for testing therapeutics targeting pathways involved in the development of Atopic Dermatitis (AD) with better translatability to the patient. Methods: NOD-scid IL2R \(\gamma^{null}\) mice engrafted with human peripheral blood mononuclear cells (hPBMC) derived from patients suffering from AD and healthy volunteers were treated with IL-4 and the antagonistic IL-4 variant R121/Y124D (Pitrakinra). Levels of human (h) IgE, amount of B-, T- and plasma-cells and ratio of CD4 : CD8 positive cells served as read out for induction and inhibition of cell proliferation and hIgE secretion. Results were compared to in vitro analysis. Results: hIgE secretion was induced by IL-4 and inhibited by the IL-4 antagonist Pitrakinra in vivo when formulated with methylcellulose. B-cells proliferated in response to IL-4 in vivo; the effect was abrogated by Pitrakinra. IL-4 shifted CD4 : CD8 ratios in vitro and in vivo when hPBMC derived from healthy volunteers were used. Pitrakinra reversed the effect. Human PBMC derived from patients with AD remained inert and engrafted mice reflected the individual responses observed in vitro. Conclusion: NOD-scid IL2R \(\gamma^{null}\) mice engrafted with human PBMC reflect the immunological history of the donors and provide a complementary tool to in vitro studies. Thus, studies in this model might provide data with better translatability from bench to bedside.}, language = {en} } @article{YoungClementsLangetal.2014, author = {Young, Joanna C. and Clements, Abigail and Lang, Alexander E. and Garnett, James A. and Munera, Diana and Arbeloa, Ana and Pearson, Jaclyn and Hartland, Elizabeth L. and Matthews, Stephen J. and Mousnier, Aurelie and Barry, David J. and Way, Michael and Schlosser, Andreas and Aktories, Klaus and Frankel, Gad}, title = {The Escherichia coli effector EspJ blocks Src kinase activity via amidation and ADP ribosylation}, series = {Nature Communications}, volume = {5}, journal = {Nature Communications}, number = {5887}, doi = {10.1038/ncomms6887}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121157}, year = {2014}, abstract = {The hallmark of enteropathogenic Escherichia coli (EPEC) infection is the formation of actin-rich pedestal-like structures, which are generated following phosphorylation of the bacterial effector Tir by cellular Src and Abl family tyrosine kinases. This leads to recruitment of the Nck-WIP-N-WASP complex that triggers Arp2/3-dependent actin polymerization in the host cell. The same phosphorylation-mediated signalling network is also assembled downstream of the Vaccinia virus protein A36 and the phagocytic Fc-gamma receptor FcγRIIa. Here we report that the EPEC type-III secretion system effector EspJ inhibits autophosphorylation of Src and phosphorylation of the Src substrates Tir and FcγRIIa. Consistent with this, EspJ inhibits actin polymerization downstream of EPEC, Vaccinia virus and opsonized red blood cells. We identify EspJ as a unique adenosine diphosphate (ADP) ribosyltransferase that directly inhibits Src kinase by simultaneous amidation and ADP ribosylation of the conserved kinase-domain residue, Src E310, resulting in glutamine-ADP ribose.}, language = {en} } @article{WoelfelSaetteleZechmeisteretal.2020, author = {W{\"o}lfel, Angela and S{\"a}ttele, Mathias and Zechmeister, Christina and Nikolaev, Viacheslov O. and Lohse, Martin J. and Boege, Fritz and Jahns, Roland and Boivin-Jahns, Val{\´e}rie}, title = {Unmasking features of the auto-epitope essential for β\(_1\)-adrenoceptor activation by autoantibodies in chronic heart failure}, series = {ESC Heart Failure}, volume = {7}, journal = {ESC Heart Failure}, number = {4}, doi = {10.1002/ehf2.12747}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235974}, pages = {1830-1841}, year = {2020}, abstract = {Aims Chronic heart failure (CHF) can be caused by autoantibodies stimulating the heart via binding to first and/or second extracellular loops of cardiac β1-adrenoceptors. Allosteric receptor activation depends on conformational features of the autoantibody binding site. Elucidating these features will pave the way for the development of specific diagnostics and therapeutics. Our aim was (i) to fine-map the conformational epitope within the second extracellular loop of the human β\(_1\)-adrenoceptor (β1ECII) that is targeted by stimulating β\(_1\)-receptor (auto)antibodies and (ii) to generate competitive cyclopeptide inhibitors of allosteric receptor activation, which faithfully conserve the conformational auto-epitope. Methods and results Non-conserved amino acids within the β\(_1\)EC\(_{II}\) loop (compared with the amino acids constituting the ECII loop of the β\(_2\)-adrenoceptor) were one by one replaced with alanine; potential intra-loop disulfide bridges were probed by cysteine-serine exchanges. Effects on antibody binding and allosteric receptor activation were assessed (i) by (auto)antibody neutralization using cyclopeptides mimicking β1ECII ± the above replacements, and (ii) by (auto)antibody stimulation of human β\(_1\)-adrenoceptors bearing corresponding point mutations. With the use of stimulating β\(_1\)-receptor (auto)antibodies raised in mice, rats, or rabbits and isolated from exemplary dilated cardiomyopathy patients, our series of experiments unmasked two features of the β\(_1\)EC\(_{II}\) loop essential for (auto)antibody binding and allosteric receptor activation: (i) the NDPK\(^{211-214}\) motif and (ii) the intra-loop disulfide bond C\(^{209}\)↔C\(^{215}\). Of note, aberrant intra-loop disulfide bond C\(^{209}\)↔C\(^{216}\) almost fully disrupted the functional auto-epitope in cyclopeptides. Conclusions The conformational auto-epitope targeted by cardio-pathogenic β\(_1\)-receptor autoantibodies is faithfully conserved in cyclopeptide homologues of the β\(_1\)EC\(_{II}\) loop bearing the NDPK\(^{211-214}\) motif and the C\(^{209}\)↔C\(^{215}\) bridge while lacking cysteine C216. Such molecules provide promising tools for novel diagnostic and therapeutic approaches in β\(_1\)-autoantibodypositive CHF.}, language = {en} } @phdthesis{Wolski2011, author = {Wolski, Stefanie Carola}, title = {Structural and functional characterization of nucleotide excision repair proteins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67183}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {XPD is a 5'-3' helicase of the superfamily 2. As part of the transcription factor IIH it functions in transcription initiation and nucleotide excision repair. This work focus on the role of XPD in nucleotide excision repair. NER is a DNA repair pathway unique for its broad substrate range. In placental mammals NER is the only repair mechanism able to remove lesions induced by UV-light. NER can be divided into four different steps that are conserved between pro- and eukaryotes. Step 1 consists of the initial damage recognition, during step 2 the putative damage is verified, in step 3 the verified damage is excised and in the 4th and final step the resulting gap in the DNA is refilled. XPD was shown to be involved in the damage verification step. It was possible to solve the first apo XPD structure by a MAD approach using only the endogenous iron from the iron sulfur cluster. Based on the apo XPD structure several questions arise: where is DNA bound? Where is DNA separated? How is damage verification achieved? What is the role of the FeS cluster? These questions were addressed in this work. Hypothesis driven structure based functional mutagenesis was employed and combined with detailed biochemical characterization of the variants. The variants were analyzed by thermal unfolding studies to exclude the possibility that the overall stability could be affected by the point mutation. DNA binding assays, ATPase assays and helicase assays were performed to delineate amino acid residues important for DNA binding, helicase activity and damage recognition. A structure of XPD containing a four base pair DNA fragment was solved by molecular replacement. This structure displays the polarity of the translocated strand with respect to the helicase framework. Moreover the properties of the FeS cluster were studied by electron paramagnetic resonance to get insights into the role of the FeS cluster. Furthermore XPD from Ferroplasma acidarmanus was investigated since it was shown that it is stalled at CPD containing lesions. The data provide the first detailed insight into the translocation mechanism of a SF2B helicase and reveal how polarity is achieved. This provides a basis for further anlayses understanding the combined action of the helicase and the 4Fe4S cluster to accomplish damage verification within the NER cascade.}, subject = {DNS-Reparatur}, language = {en} } @article{WolfBraunHainingetal.2016, author = {Wolf, Karen and Braun, Attila and Haining, Elizabeth J. and Tseng, Yu-Lun and Kraft, Peter and Schuhmann, Michael K. and Gotru, Sanjeev K. and Chen, Wenchun and Hermanns, Heike M. and Stoll, Guido and Lesch, Klaus-Peter and Nieswandt, Bernhard}, title = {Partially Defective Store Operated Calcium Entry and Hem(ITAM) Signaling in Platelets of Serotonin Transporter Deficient Mice}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {1}, doi = {10.1371/journal.pone.0147664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146399}, pages = {e0147664}, year = {2016}, abstract = {Background Serotonin (5-hydroxytryptamin, 5-HT) is an indolamine platelet agonist, biochemically derived from tryptophan. 5-HT is secreted from the enterochromaffin cells into the gastrointestinal tract and blood. Blood 5-HT has been proposed to regulate hemostasis by acting as a vasoconstrictor and by triggering platelet signaling through 5-HT receptor 2A (5HTR2A). Although platelets do not synthetize 5-HT, they take 5-HT up from the blood and store it in their dense granules which are secreted upon platelet activation. Objective To identify the molecular composite of the 5-HT uptake system in platelets and elucidate the role of platelet released 5-HT in thrombosis and ischemic stroke. Methods: 5-HT transporter knockout mice (5Htt\(^{-/-}\)) were analyzed in different in vitro and in vivo assays and in a model of ischemic stroke. Results In 5Htt\(^{-/-}\) platelets, 5-HT uptake from the blood was completely abolished and agonist-induced Ca2+ influx through store operated Ca\(^{2+}\) entry (SOCE), integrin activation, degranulation and aggregation responses to glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2) were reduced. These observed in vitro defects in 5Htt\(^{-/-}\) platelets could be normalized by the addition of exogenous 5-HT. Moreover, reduced 5-HT levels in the plasma, an increased bleeding time and the formation of unstable thrombi were observed ex vivo under flow and in vivo in the abdominal aorta and carotid artery of 5Htt\(^{-/-}\) mice. Surprisingly, in the transient middle cerebral artery occlusion (tMCAO) model of ischemic stroke 5Htt\(^{-/-}\) mice showed nearly normal infarct volume and the neurological outcome was comparable to control mice. Conclusion Although secreted platelet 5-HT does not appear to play a crucial role in the development of reperfusion injury after stroke, it is essential to amplify the second phase of platelet activation through SOCE and plays an important role in thrombus stabilization.}, language = {en} } @article{WippelMaurerFortschetal.2013, author = {Wippel, Carolin and Maurer, Jana and Fortsch, Christina and Hupp, Sabrina and Bohl, Alexandra and Ma, Jiangtao and Mitchell, Timothy J. and Bunkowski, Stephanie and Br{\"u}ck, Wolfgang and Nau, Roland and Iliev, Asparouh I.}, title = {Bacterial Cytolysin during Meningitis Disrupts the Regulation of Glutamate in the Brain, Leading to Synaptic Damage}, series = {PLoS Pathogens}, volume = {9}, journal = {PLoS Pathogens}, number = {6}, doi = {10.1371/journal.ppat.1003380}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130462}, pages = {e1003380}, year = {2013}, abstract = {Abstract Streptococcus pneumoniae (pneumococcal) meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage. Author Summary Bacterial meningitis is one of the most devastating brain diseases. Among the bacteria that cause meningitis, Streptococcus pneumoniae is the most common. Meningitis predominantly affects children, especially in the Third World, and most of them do not survive. Those that do survive often suffer permanent brain damage and hearing problems. The exact morphological substrates of brain damage in Streptococcus pneumoniae meningitis remain largely unknown. In our experiments, we found that the brain cortex of patients with meningitis demonstrated a loss of synapses (the contact points among neurons, responsible for the processes of learning and memory), and we identified the major pneumococcal neurotoxin pneumolysin as a sufficient cause of this loss. The effect was not direct but was mediated by the brain neurotransmitter glutamate, which was released upon toxin binding by one of the non-neuronal cell types of the brain - the astrocytes. Pneumolysin initiated calcium influx in astrocytes and subsequent glutamate release. Glutamate damaged the synapses via NMDA-receptors - a mechanism similar to the damage occurring in brain ischemia. Thus, we show that synaptic loss is present in pneumococcal meningitis, and we identify the toxic bacterial protein pneumolysin as the major factor in this process. These findings alter our understanding of bacterial meningitis and establish new therapeutic strategies for this fatal disease.}, language = {en} } @article{WippelFoertschHuppetal.2011, author = {Wippel, Carolin and F{\"o}rtsch, Christina and Hupp, Sabrina and Maier, Elke and Benz, Roland and Ma, Jiangtao and Mitchell, Timothy J and Iliev, Asparouh I}, title = {Extracellular Calcium Reduction Strongly Increases the Lytic Capacity of Pneumolysin From Streptococcus Pneumoniae in Brain Tissue}, series = {The Journal of Infectious Diseases}, volume = {204}, journal = {The Journal of Infectious Diseases}, number = {6}, doi = {10.1093/infdis/jir434}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139356}, pages = {930-936}, year = {2011}, abstract = {Background Streptococcus pneumoniae causes serious diseases such as pneumonia and meningitis. Its major pathogenic factor is the cholesterol-dependent cytolysin pneumolysin, which produces lytic pores at high concentrations. At low concentrations, it has other effects, including induction of apoptosis. Many cellular effects of pneumolysin appear to be calcium dependent. Methods  Live imaging of primary mouse astroglia exposed to sublytic amounts of pneumolysin at various concentrations of extracellular calcium was used to measure changes in cellular permeability (as judged by lactate dehydrogenase release and propidium iodide chromatin staining). Individual pore properties were analyzed by conductance across artificial lipid bilayer. Tissue toxicity was studied in continuously oxygenated acute brain slices. Results  The reduction of extracellular calcium increased the lytic capacity of the toxin due to increased membrane binding. Reduction of calcium did not influence the conductance properties of individual toxin pores. In acute cortical brain slices, the reduction of extracellular calcium from 2 to 1 mM conferred lytic activity to pathophysiologically relevant nonlytic concentrations of pneumolysin. Conclusions  Reduction of extracellular calcium strongly enhanced the lytic capacity of pneumolysin due to increased membrane binding. Thus, extracellular calcium concentration should be considered as a factor of primary importance for the course of pneumococcal meningitis. "}, language = {en} } @article{WiesslerTalucciPiroetal.2024, author = {Wiessler, Anna-Lena and Talucci, Ivan and Piro, Inken and Seefried, Sabine and H{\"o}rlin, Verena and Baykan, Bet{\"u}l B. and T{\"u}z{\"u}n, Erdem and Schaefer, Natascha and Maric, Hans M. and Sommer, Claudia and Villmann, Carmen}, title = {Glycine receptor β-targeting autoantibodies contribute to the pathology of autoimmune diseases}, series = {Neurology: Neuroimmunology \& Neuroinflammation}, volume = {11}, journal = {Neurology: Neuroimmunology \& Neuroinflammation}, number = {2}, doi = {10.1212/NXI.0000000000200187}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349958}, year = {2024}, abstract = {Background and Objectives Stiff-person syndrome (SPS) and progressive encephalomyelitis with rigidity and myoclonus (PERM) are rare neurologic disorders of the CNS. Until now, exclusive GlyRα subunit-binding autoantibodies with subsequent changes in function and surface numbers were reported. GlyR autoantibodies have also been described in patients with focal epilepsy. Autoimmune reactivity against the GlyRβ subunits has not yet been shown. Autoantibodies against GlyRα1 target the large extracellular N-terminal domain. This domain shares a high degree of sequence homology with GlyRβ making it not unlikely that GlyRβ-specific autoantibody (aAb) exist and contribute to the disease pathology. Methods In this study, we investigated serum samples from 58 patients for aAb specifically detecting GlyRβ. Studies in microarray format, cell-based assays, and primary spinal cord neurons and spinal cord tissue immunohistochemistry were performed to determine specific GlyRβ binding and define aAb binding to distinct protein regions. Preadsorption approaches of aAbs using living cells and the purified extracellular receptor domain were further used. Finally, functional consequences for inhibitory neurotransmission upon GlyRβ aAb binding were resolved by whole-cell patch-clamp recordings. Results Among 58 samples investigated, cell-based assays, tissue analysis, and preadsorption approaches revealed 2 patients with high specificity for GlyRβ aAb. Quantitative protein cluster analysis demonstrated aAb binding to synaptic GlyRβ colocalized with the scaffold protein gephyrin independent of the presence of GlyRα1. At the functional level, binding of GlyRβ aAb from both patients to its target impair glycine efficacy. Discussion Our study establishes GlyRβ as novel target of aAb in patients with SPS/PERM. In contrast to exclusively GlyRα1-positive sera, which alter glycine potency, aAbs against GlyRβ impair receptor efficacy for the neurotransmitter glycine. Imaging and functional analyses showed that GlyRβ aAbs antagonize inhibitory neurotransmission by affecting receptor function rather than localization.}, language = {en} } @phdthesis{WeigelverhHoffmann2024, author = {Weigel [verh. Hoffmann], Mathis Leonard}, title = {Thrombozytenfunktionsanalyse als potenzielles Instrument zur Fr{\"u}herkennung von Sepsis}, doi = {10.25972/OPUS-35819}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358193}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Sepsis ist ein h{\"a}ufiges und akut lebensbedrohliches Syndrom, das eine Organfunktionsst{\"o}rung in Folge einer dysregulierten Immunantwort auf eine Infektion beschreibt. Eine fr{\"u}hzeitige Diagnosestellung und Therapieeinleitung sind von zentraler Bedeutung f{\"u}r das {\"U}berleben der Patient:innen. In einer Pilotstudie konnte unsere Forschungsgruppe mittels Durchflusszytometrie eine ausgepr{\"a}gte Hyporeaktivit{\"a}t der Thrombozyten bei Sepsis nachweisen, die einen potenziell neuen Biomarker zur Sepsis-Fr{\"u}herkennung darstellt. Zur Evaluation des Ausmaßes und Entstehungszeitpunktes der detektierten Thrombozytenfunktionsst{\"o}rung wurden im Rahmen der vorliegenden Arbeit zus{\"a}tzlich zu Patient:innen mit Sepsis (SOFA-Score ≥ 2; n=13) auch hospitalisierte Patient:innen mit einer Infektion ohne Sepsis (SOFA-Score < 2; n=12) rekrutiert. Beide Kohorten wurden zu zwei Zeitpunkten (t1: <24h; t2: Tag 5-7) im Krankheitsverlauf mittels Durchflusszytometrie und PFA-200 untersucht und mit einer gesunden Kontrollgruppe (n=28) verglichen. Ph{\"a}notypische Auff{\"a}lligkeiten der Thrombozyten bei Sepsis umfassten: (i) eine ver{\"a}nderte Expression verschiedener Untereinheiten des GPIb-IX-V-Rezeptorkomplexes, die auf ein verst{\"a}rktes Rezeptor-Shedding hindeutet; (ii) ein ausgepr{\"a}gtes Mepacrin-Beladungsdefizit, das auf eine zunehmend reduzierte Anzahl von δ-Granula entlang des Infektion-Sepsis Kontinuums hinweist; (iii) eine Reduktion endst{\"a}ndig gebundener Sialins{\"a}ure im Sinne einer verst{\"a}rkten Desialylierung. Die funktionelle Analyse der Thrombozyten bei Sepsis ergab bei durchflusszytometrischer Messung der Integrin αIIbβ3-Aktivierung (PAC-1-Bindung) eine ausgepr{\"a}gte generalisierte Hyporeaktivit{\"a}t gegen{\"u}ber multiplen Agonisten, die abgeschw{\"a}cht bereits bei Infektion nachweisbar war und gem{\"a}ß ROC-Analysen gut zwischen Infektion und Sepsis diskriminierte (AUC >0.80 f{\"u}r alle Agonisten). Im Gegensatz dazu zeigten Thrombozyten bei Sepsis und Analyse mittels PFA-200 unter Einfluss physiologischer Scherkr{\"a}fte eine normale bis gar beschleunigte Aggregation. Die Reaktivit{\"a}tsmessung von Thrombozyten mittels Durchflusszytometrie stellt weiterhin einen vielversprechenden Biomarker f{\"u}r die Sepsis-Fr{\"u}herkennung dar. F{\"u}r weitere Schlussfolgerungen ist jedoch eine gr{\"o}ßere Kohorte erforderlich. In nachfolgenden Untersuchungen sollten zudem mechanistische Ursachen der beschriebenen ph{\"a}notypischen und funktionellen Auff{\"a}lligkeiten von Thrombozyten bei Infektion und Sepsis z.B. mittels Koinkubationsexperimenten untersucht werden.}, subject = {Sepsis}, language = {de} } @article{WeigandRonchiVanselowetal.2021, author = {Weigand, Isabel and Ronchi, Cristina L. and Vanselow, Jens T. and Bathon, Kerstin and Lenz, Kerstin and Herterich, Sabine and Schlosser, Andreas and Kroiss, Matthias and Fassnacht, Martin and Calebiro, Davide and Sbiera, Silviu}, title = {PKA Cα subunit mutation triggers caspase-dependent RIIβ subunit degradation via Ser\(^{114}\) phosphorylation}, series = {Science Advances}, volume = {7}, journal = {Science Advances}, number = {8}, doi = {10.1126/sciadv.abd4176}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270445}, year = {2021}, abstract = {Mutations in the PRKACA gene are the most frequent cause of cortisol-producing adrenocortical adenomas leading to Cushing's syndrome. PRKACA encodes for the catalytic subunit α of protein kinase A (PKA). We already showed that PRKACA mutations lead to impairment of regulatory (R) subunit binding. Furthermore, PRKACA mutations are associated with reduced RIIβ protein levels; however, the mechanisms leading to reduced RIIβ levels are presently unknown. Here, we investigate the effects of the most frequent PRKACA mutation, L206R, on regulatory subunit stability. We find that Ser\(^{114}\) phosphorylation of RIIβ is required for its degradation, mediated by caspase 16. Last, we show that the resulting reduction in RIIβ protein levels leads to increased cortisol secretion in adrenocortical cells. These findings reveal the molecular mechanisms and pathophysiological relevance of the R subunit degradation caused by PRKACA mutations, adding another dimension to the deregulation of PKA signaling caused by PRKACA mutations in adrenal Cushing's syndrome.}, language = {en} } @article{WeiderWegenerSchmittetal.2015, author = {Weider, Matthias and Wegener, Am{\´e}lie and Schmitt, Christian and K{\"u}spert, Melanie and Hillg{\"a}rtner, Simone and B{\"o}sl, Michael R. and Hermans-Borgmeyer, Irm and Nait-Oumesmar, Brahim and Wegner, Michael}, title = {Elevated in vivo levels of a single transcription factor directly convert satellite glia into oligodendrocyte-like cells}, series = {PLoS Genetics}, volume = {11}, journal = {PLoS Genetics}, number = {2}, doi = {10.1371/journal.pgen.1005008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144123}, pages = {e1005008}, year = {2015}, abstract = {Oligodendrocytes are the myelinating glia of the central nervous system and ensure rapid saltatory conduction. Shortage or loss of these cells leads to severe malfunctions as observed in human leukodystrophies and multiple sclerosis, and their replenishment by reprogramming or cell conversion strategies is an important research aim. Using a transgenic approach we increased levels of the transcription factor Sox10 throughout the mouse embryo and thereby prompted Fabp7-positive glial cells in dorsal root ganglia of the peripheral nervous system to convert into cells with oligodendrocyte characteristics including myelin gene expression. These rarely studied and poorly characterized satellite glia did not go through a classic oligodendrocyte precursor cell stage. Instead, Sox10 directly induced key elements of the regulatory network of differentiating oligodendrocytes, including Olig2, Olig1, Nkx2.2 and Myrf. An upstream enhancer mediated the direct induction of the Olig2 gene. Unlike Sox10, Olig2 was not capable of generating oligodendrocyte-like cells in dorsal root ganglia. Our findings provide proof-of-concept that Sox10 can convert conducive cells into oligodendrocyte-like cells in vivo and delineates options for future therapeutic strategies.}, language = {en} } @article{WeibelBasseLuesebrinkHessetal.2013, author = {Weibel, Stephanie and Basse-Luesebrink, Thomas Christian and Hess, Michael and Hofmann, Elisabeth and Seubert, Carolin and Langbein-Laugwitz, Johanna and Gentschev, Ivaylo and Sturm, Volker J{\"o}rg Friedrich and Ye, Yuxiang and Kampf, Thomas and Jakob, Peter Michael and Szalay, Aladar A.}, title = {Imaging of Intratumoral Inflammation during Oncolytic Virotherapy of Tumors by \(^{19}\)F-Magnetic Resonance Imaging (MRI)}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0056317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130311}, pages = {e56317}, year = {2013}, abstract = {Background Oncolytic virotherapy of tumors is an up-coming, promising therapeutic modality of cancer therapy. Unfortunately, non-invasive techniques to evaluate the inflammatory host response to treatment are rare. Here, we evaluate \(^{19}\)F magnetic resonance imaging (MRI) which enables the non-invasive visualization of inflammatory processes in pathological conditions by the use of perfluorocarbon nanoemulsions (PFC) for monitoring of oncolytic virotherapy. Methodology/Principal Findings The Vaccinia virus strain GLV-1h68 was used as an oncolytic agent for the treatment of different tumor models. Systemic application of PFC emulsions followed by \(^1H\)/\(^{19}\)F MRI of mock-infected and GLV-1h68-infected tumor-bearing mice revealed a significant accumulation of the \(^{19}\)F signal in the tumor rim of virus-treated mice. Histological examination of tumors confirmed a similar spatial distribution of the \(^{19}\)F signal hot spots and \(CD68^+\)-macrophages. Thereby, the \(CD68^+\)-macrophages encapsulate the GFP-positive viral infection foci. In multiple tumor models, we specifically visualized early inflammatory cell recruitment in Vaccinia virus colonized tumors. Furthermore, we documented that the \(^{19}\)F signal correlated with the extent of viral spreading within tumors. Conclusions/Significance These results suggest \(^{19}\)F MRI as a non-invasive methodology to document the tumor-associated host immune response as well as the extent of intratumoral viral replication. Thus, \(^{19}\)F MRI represents a new platform to non-invasively investigate the role of the host immune response for therapeutic outcome of oncolytic virotherapy and individual patient response.}, language = {en} } @article{WangChenMinevetal.2012, author = {Wang, Huiqiang and Chen, Nanhai G. and Minev, Boris R. and Szalay, Aladar A.}, title = {Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells}, series = {Journal of Translational Medicine}, volume = {10}, journal = {Journal of Translational Medicine}, number = {167}, doi = {10.1186/1479-5876-10-167}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130019}, year = {2012}, abstract = {Background: Recent data suggest that cancer stem cells (CSCs) play an important role in cancer, as these cells possess enhanced tumor-forming capabilities and are responsible for relapses after apparently curative therapies have been undertaken. Hence, novel cancer therapies will be needed to test for both tumor regression and CSC targeting. The use of oncolytic vaccinia virus (VACV) represents an attractive anti-tumor approach and is currently under evaluation in clinical trials. The purpose of this study was to demonstrate whether VACV does kill CSCs that are resistant to irradiation and chemotherapy. Methods: Cancer stem-like cells were identified and separated from the human breast cancer cell line GI-101A by virtue of increased aldehyde dehydrogenase 1 (ALDH1) activity as assessed by the ALDEFLUOR assay and cancer stem cell-like features such as chemo-resistance, irradiation-resistance and tumor-initiating were confirmed in cell culture and in animal models. VACV treatments were applied to both ALDEFLUOR-positive cells in cell culture and in xenograft tumors derived from these cells. Moreover, we identified and isolated CD44\(^+\)CD24\(^+\)ESA\(^+\) cells from GI-101A upon an epithelial-mesenchymal transition (EMT). These cells were similarly characterized both in cell culture and in animal models. Results: We demonstrated for the first time that the oncolytic VACV GLV-1h68 strain replicated more efficiently in cells with higher ALDH1 activity that possessed stem cell-like features than in cells with lower ALDH1 activity. GLV-1h68 selectively colonized and eventually eradicated xenograft tumors originating from cells with higher ALDH1 activity. Furthermore, GLV-1h68 also showed preferential replication in CD44\(^+\)CD24\(^+\)ESA\(^+\) cells derived from GI-101A upon an EMT induction as well as in xenograft tumors originating from these cells that were more tumorigenic than CD44\(^+\)CD24\(^-\)ESA\(^+\) cells. Conclusions: Taken together, our findings indicate that GLV-1h68 efficiently replicates and kills cancer stem-like cells. Thus, GLV-1h68 may become a promising agent for eradicating both primary and metastatic tumors, especially tumors harboring cancer stem-like cells that are resistant to chemo and/or radiotherapy and may be responsible for recurrence of tumors.}, language = {en} } @article{WagnerMottUpcinetal.2021, author = {Wagner, Nicole and Mott, Kristina and Upcin, Berin and Stegner, David and Schulze, Harald and Erg{\"u}n, S{\"u}leyman}, title = {CXCL12-abundant reticular (CAR) cells direct megakaryocyte protrusions across the bone marrow sinusoid wall}, series = {Cells}, volume = {10}, journal = {Cells}, number = {4}, issn = {2073-4409}, doi = {10.3390/cells10040722}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234180}, year = {2021}, abstract = {Megakaryocytes (MKs) release platelets into the lumen of bone marrow (BM) sinusoids while remaining to reside within the BM. The morphogenetic events of this complex process are still not fully understood. We combined confocal laser scanning microscopy with transmission and serial block-face scanning electron microscopy followed by 3D-reconstruction on mouse BM tissue sections. These analyses revealed that MKs in close vicinity to BM sinusoid (BMS) wall first induce the lateral retraction of CXCL12-abundant reticular (CAR) cells (CAR), followed by basal lamina (BL) degradation enabling direct MK-sinusoidal endothelial cells (SECs) interaction. Subsequently, an endothelial engulfment starts that contains a large MK protrusion. Then, MK protrusions penetrate the SEC, transmigrate into the BMS lumen and form proplatelets that are in direct contact to the SEC surface. Furthermore, such processes are induced on several sites, as observed by 3D reconstructions. Our data demonstrate that MKs in interaction with CAR-cells actively induce BMS wall alterations, including CAR-cell retraction, BL degradation, and SEC engulfment containing a large MK protrusion. This results in SEC penetration enabling the migration of MK protrusion into the BMS lumen where proplatelets that are adherent to the luminal SEC surface are formed and contribute to platelet release into the blood circulation.}, language = {en} } @phdthesis{Voegtle2014, author = {V{\"o}gtle, Timo}, title = {Studies on receptor signaling and regulation in platelets and T cells from genetically modified mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97114}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Receptors with tyrosine-based signaling motifs control essential functions of hematopoietic cells, including lymphocytes and platelets. Downstream of the platelet receptor glycoprotein (GP) VI and the T cell receptor (TCR) the immunoreceptor tyrosine-based activation motif (ITAM) initiates a signaling cascade that involves kinases, adapter and effector proteins and finally leads to cellular activation. This thesis summarizes the results of three studies investigating different aspects of receptor signaling and regulation in platelets and T cells. In the first part, the impact of constitutive Ca2+ influx on TCR signaling and T cell physiology was investigated using a transgenic mouse line with a mutation in the Ca2+ sensor stromal interaction molecule 1 (STIM1). The elevated cytoplasmic Ca2+ level resulted in an altered phosphorylation pattern of the key enzyme phospholipase (PL) Cγ1 in response to TCR stimulation, but without affecting its enzymatic activity. Withdrawal of extracellular Ca2+ or inhibition of the phosphatase calcineurin restored the normal phosphorylation pattern. In addition, there was a decrease in the release of Th2-type cytokines interleukin 4, 5 and 13 upon stimulation in vitro. The second part of the thesis deals with the role of the adapter protein growth factor receptor-bound protein 2 (Grb2) in platelets using a megakaryocyte/platelet-specific knockout mouse line. Loss of Grb2 severely impaired signaling of GPVI and C-type lectin-like receptor 2 (CLEC-2), a related hemITAM receptor. This was attributed to defective stabilization of the linker for activation of T cells (LAT) signalosome and resulted in reduced adhesion, aggregation, Ca2+ mobilization and procoagulant activity downstream of (hem)ITAM-coupled receptors in vitro. In contrast, the signaling pathways of G protein-coupled receptors (GPCRs) and the integrin αIIbβ3, which do not utilize the LAT signalosome, were unaffected. In vivo, the defective (hem)ITAM signaling caused prolonged bleeding times, however, thrombus formation was only affected under conditions where GPCR signaling was impaired (upon acetylsalicylic acid treatment). These results establish Grb2 as an important adapter protein in the propagation of GPVI- and CLEC-2-induced signals. Finally, the proteolytic regulation of the immunoreceptor tyrosine-based switch motif (ITSM)-bearing receptor CD84 in platelets was investigated. This study demonstrated that in mice CD84 is cleaved by two distinct and independent proteolytic mechanisms upon platelet activation: shedding of the extracellular part, which is exclusively mediated by a disintegrin and metalloproteinase (ADAM) 10 and cleavage of the intracellular C-terminus by the protease calpain. Finally, the analysis of soluble CD84 levels in the plasma of transgenic mice revealed that shedding of CD84 by ADAM10 occurs constitutively in vivo.}, subject = {Thrombozyt}, language = {en} }